Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization

小RNA 计算机科学 相似性(几何) 非负矩阵分解 矩阵分解 疾病 图形 自编码 生物网络 理论计算机科学 计算生物学 人工智能 人工神经网络 算法 数据挖掘 医学 生物 遗传学 图像(数学) 物理 基因 病理 特征向量 量子力学
作者
Yulian Ding,Xiujuan Lei,Bo Liao,Fang‐Xiang Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 446-457 被引量:47
标识
DOI:10.1109/jbhi.2021.3088342
摘要

MicroRNAs (miRNAs) have been proved to play critical roles in diverse biological processes, including the human disease development process. Exploring the potential associations between miRNAs and diseases can help us better understand complex disease mechanisms. Given that traditional biological experiments are expensive and time-consuming, computational models can serve as efficient means to uncover potential miRNA-disease associations. This study presents a new computational model based on variational graph auto-encoder with matrix factorization (VGAMF) for miRNA-disease association prediction. More specifically, VGAMF first integrates four different types of information about miRNAs into an miRNA comprehensive similarity network and two types of information about diseases into a disease comprehensive similarity network, respectively. Then, VGAMF gets the non-linear representations of miRNAs and diseases, respectively, from those two comprehensive similarity networks with variational graph auto-encoders. Simultaneously, a non-negative matrix factorization is conducted on the miRNA-disease association matrix to get the linear representations of miRNAs and diseases. Finally, a fully connected neural network combines linear and non-linear representations of miRNAs and diseases to get the final predicted association score for all miRNA-disease pairs. In the 10-fold cross-validation experiments, VGAMF achieves an average AUC of 0.9280 on HMDD v2.0 and 0.9470 on HMDD v3.2, which outperforms other competing methods. Besides, the case studies on colon cancer and esophageal cancer further demonstrate the effectiveness of VGAMF in predicting novel miRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助linl采纳,获得10
1秒前
HPP123完成签到,获得积分10
2秒前
阔达书雪完成签到,获得积分10
4秒前
6秒前
enndyou完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
10秒前
激昂的采波完成签到 ,获得积分20
11秒前
Niuma发布了新的文献求助10
12秒前
12秒前
李爱国应助弄香采纳,获得10
13秒前
13秒前
奔奔发布了新的文献求助10
13秒前
hwezhu发布了新的文献求助10
15秒前
求文完成签到,获得积分10
15秒前
yu_z发布了新的文献求助10
15秒前
16秒前
耿耿完成签到,获得积分10
16秒前
包追命完成签到,获得积分10
19秒前
童梓祺完成签到,获得积分10
21秒前
柠檬九分酸完成签到,获得积分10
21秒前
学术渣完成签到 ,获得积分10
23秒前
25秒前
卢飞薇完成签到,获得积分10
28秒前
wonhui发布了新的文献求助10
30秒前
卢飞薇发布了新的文献求助10
31秒前
33秒前
33秒前
aaaaarfv发布了新的文献求助10
33秒前
兜兜发布了新的文献求助10
33秒前
老北京发布了新的文献求助10
34秒前
因你常乐发布了新的文献求助10
36秒前
dddddd完成签到,获得积分10
36秒前
王治豪发布了新的文献求助10
38秒前
kk完成签到,获得积分10
40秒前
是然宝啊完成签到,获得积分10
40秒前
慕青应助aaaaarfv采纳,获得10
41秒前
lbx完成签到,获得积分10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079