Frontal EEG-Based Multi-Level Attention States Recognition Using Dynamical Complexity and Extreme Gradient Boosting

脑电图 人工智能 计算机科学 Boosting(机器学习) 分类器(UML) 认知 极限学习机 模式识别(心理学) 心理学 注意力缺陷 机器学习 认知心理学 人工神经网络 神经科学
作者
Wang Wan,Xingran Cui,Zhilin Gao,Zaozao Chen
出处
期刊:Frontiers in Human Neuroscience [Frontiers Media]
卷期号:15 被引量:23
标识
DOI:10.3389/fnhum.2021.673955
摘要

Measuring and identifying the specific level of sustained attention during continuous tasks is essential in many applications, especially for avoiding the terrible consequences caused by reduced attention of people with special tasks. To this end, we recorded EEG signals from 42 subjects during the performance of a sustained attention task and obtained resting state and three levels of attentional states using the calibrated response time. EEG-based dynamical complexity features and Extreme Gradient Boosting (XGBoost) classifier were proposed as the classification model, Complexity-XGBoost, to distinguish multi-level attention states with improved accuracy. The maximum average accuracy of Complexity-XGBoost were 81.39 ± 1.47% for four attention levels, 80.42 ± 0.84% for three attention levels, and 95.36 ± 2.31% for two attention levels in 5-fold cross-validation. The proposed method is compared with other models of traditional EEG features and different classification algorithms, the results confirmed the effectiveness of the proposed method. We also found that the frontal EEG dynamical complexity measures were related to the changing process of response during sustained attention task. The proposed dynamical complexity approach could be helpful to recognize attention status during important tasks to improve safety and efficiency, and be useful for further brain-computer interaction research in clinical research or daily practice, such as the cognitive assessment or neural feedback treatment of individuals with attention deficit hyperactivity disorders, Alzheimer’s disease, and other diseases which affect the sustained attention function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星你发布了新的文献求助10
刚刚
2秒前
琉璃苣发布了新的文献求助10
2秒前
3秒前
3秒前
充电宝应助郁香薇采纳,获得10
3秒前
uraylong发布了新的文献求助10
3秒前
ff发布了新的文献求助10
3秒前
4秒前
小董发布了新的文献求助10
4秒前
研友_VZG7GZ应助玩是罪恶的采纳,获得10
5秒前
6秒前
ABin完成签到,获得积分20
6秒前
zxy发布了新的文献求助10
7秒前
8秒前
8秒前
冷酷的亿先完成签到,获得积分10
8秒前
8秒前
万能图书馆应助刘聪聪采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
琉璃苣完成签到,获得积分10
9秒前
盒子先生完成签到,获得积分10
9秒前
细腻冬日完成签到,获得积分10
9秒前
八零完成签到,获得积分10
9秒前
所所应助you采纳,获得10
9秒前
啊哈完成签到,获得积分10
10秒前
东临完成签到,获得积分10
11秒前
11秒前
凉薄少年应助ABin采纳,获得10
11秒前
小荇发布了新的文献求助10
11秒前
yar应助懒羊羊采纳,获得10
11秒前
瘦瘦怜阳完成签到,获得积分10
12秒前
三新荞发布了新的文献求助10
13秒前
从未停步发布了新的文献求助10
13秒前
13秒前
玉洁发布了新的文献求助20
15秒前
TMOMOR应助一只羊采纳,获得10
15秒前
八九完成签到,获得积分10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970843
求助须知:如何正确求助?哪些是违规求助? 3515550
关于积分的说明 11178897
捐赠科研通 3250660
什么是DOI,文献DOI怎么找? 1795393
邀请新用户注册赠送积分活动 875828
科研通“疑难数据库(出版商)”最低求助积分说明 805188