Frontal EEG-Based Multi-Level Attention States Recognition Using Dynamical Complexity and Extreme Gradient Boosting

脑电图 人工智能 计算机科学 Boosting(机器学习) 分类器(UML) 认知 极限学习机 模式识别(心理学) 心理学 注意力缺陷 机器学习 认知心理学 人工神经网络 神经科学
作者
Wang Wan,Xingran Cui,Zhilin Gao,Zaozao Chen
出处
期刊:Frontiers in Human Neuroscience [Frontiers Media SA]
卷期号:15 被引量:23
标识
DOI:10.3389/fnhum.2021.673955
摘要

Measuring and identifying the specific level of sustained attention during continuous tasks is essential in many applications, especially for avoiding the terrible consequences caused by reduced attention of people with special tasks. To this end, we recorded EEG signals from 42 subjects during the performance of a sustained attention task and obtained resting state and three levels of attentional states using the calibrated response time. EEG-based dynamical complexity features and Extreme Gradient Boosting (XGBoost) classifier were proposed as the classification model, Complexity-XGBoost, to distinguish multi-level attention states with improved accuracy. The maximum average accuracy of Complexity-XGBoost were 81.39 ± 1.47% for four attention levels, 80.42 ± 0.84% for three attention levels, and 95.36 ± 2.31% for two attention levels in 5-fold cross-validation. The proposed method is compared with other models of traditional EEG features and different classification algorithms, the results confirmed the effectiveness of the proposed method. We also found that the frontal EEG dynamical complexity measures were related to the changing process of response during sustained attention task. The proposed dynamical complexity approach could be helpful to recognize attention status during important tasks to improve safety and efficiency, and be useful for further brain-computer interaction research in clinical research or daily practice, such as the cognitive assessment or neural feedback treatment of individuals with attention deficit hyperactivity disorders, Alzheimer’s disease, and other diseases which affect the sustained attention function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心飞雪完成签到,获得积分10
刚刚
至秦发布了新的文献求助10
1秒前
2秒前
2秒前
共享精神应助akiyy采纳,获得10
3秒前
Dado完成签到,获得积分10
3秒前
yjw完成签到,获得积分20
3秒前
爆米花应助Hhhhhhu采纳,获得10
4秒前
yapo完成签到,获得积分10
5秒前
SCI发发完成签到,获得积分10
5秒前
5秒前
5秒前
英姑应助Robe采纳,获得10
6秒前
6秒前
复杂沛白发布了新的文献求助10
6秒前
萧幻枫完成签到,获得积分10
7秒前
SciGPT应助江瀛采纳,获得10
7秒前
7秒前
文献文献文献完成签到,获得积分0
8秒前
小唐完成签到 ,获得积分10
9秒前
伯言完成签到,获得积分20
10秒前
uh发布了新的文献求助10
10秒前
11秒前
Xianhe发布了新的文献求助10
11秒前
11秒前
12秒前
七七完成签到,获得积分10
12秒前
852应助文章发的多多的采纳,获得10
13秒前
14秒前
16秒前
开放刺猬关注了科研通微信公众号
16秒前
矮小的乐菱完成签到,获得积分20
17秒前
Jun应助落叶解三秋采纳,获得10
17秒前
17秒前
肥肥发布了新的文献求助10
18秒前
紫不语发布了新的文献求助10
18秒前
尼日利亚妖王完成签到,获得积分20
18秒前
GHL完成签到,获得积分10
19秒前
19秒前
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161114
求助须知:如何正确求助?哪些是违规求助? 2812494
关于积分的说明 7895538
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315941
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602103