亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on Camouflage Recognition in Simulated Operational Environment Based on Hyperspectral Imaging Technology

伪装 高光谱成像 人工智能 计算机科学 模式识别(心理学) 支持向量机 VNIR公司 主成分分析 随机森林 像素 遥感 计算机视觉 地理
作者
Donge Zhao,Shu‐Yan Liu,Xuefeng Yang,Yayun Ma,Bin Zhang,Wenbo Chu
出处
期刊:Journal of spectroscopy [Hindawi Limited]
卷期号:2021: 1-9 被引量:10
标识
DOI:10.1155/2021/6629661
摘要

Hyperspectral imaging technology can obtain the spatial information and spectral information of the simulated operational background and its camouflage materials at the same time and identify and classify them according to their differences. In this paper, we collected the hyperspectral images (400–1000 nm) of the desert background, jungle background, desert camouflage netting, jungle camouflage netting, and jungle camouflage clothing through the hyperspectral imaging system, and the samples were preprocessed by denoising and black-and-white correction. Then, we analysed the region of interest (ROI) of the training samples by principal component analysis (PCA). After the pixels in the region of interest and their surrounding areas were averaged, 60% of the data was used as the training samples, and the remaining 40% was used as the test samples. According to their similarities and differences between them and referenced spectrum, the models of classification were established by combining the Naive Bayes (NB) algorithm, K-nearest neighbour (KNN) algorithm, random forest (RF) algorithm, and support vector machine (SVM) algorithm. The results show that among the four models, SVM model has the highest accuracy of classification and the recognition rate of jungle camouflage clothing is the highest. This study verifies the scientific and feasibility of hyperspectral imaging technology for camouflage identification and classification in a simulated operational environment, which has some practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
KBRS完成签到 ,获得积分10
8秒前
10秒前
orixero应助愉快的茗采纳,获得10
11秒前
自信寻真完成签到,获得积分10
12秒前
凉宫八月发布了新的文献求助10
12秒前
难过的念桃完成签到 ,获得积分10
13秒前
搞怪柏柳完成签到 ,获得积分10
13秒前
15秒前
凉宫八月完成签到,获得积分10
17秒前
fanhuaxuejin完成签到 ,获得积分10
20秒前
闫州关注了科研通微信公众号
25秒前
27秒前
大方剑愁发布了新的文献求助10
28秒前
32秒前
科目三应助义气海雪采纳,获得10
37秒前
37秒前
38秒前
赘婿应助世界需要我采纳,获得10
39秒前
碧蓝皮卡丘完成签到,获得积分10
41秒前
ECD发布了新的文献求助10
42秒前
44秒前
Dliii完成签到 ,获得积分10
47秒前
闫州发布了新的文献求助10
47秒前
Hillson完成签到,获得积分10
51秒前
共享精神应助大方剑愁采纳,获得10
52秒前
义气海雪完成签到,获得积分10
54秒前
喝可乐也很好完成签到,获得积分10
57秒前
WakinLEO发布了新的文献求助10
58秒前
大方剑愁完成签到 ,获得积分20
1分钟前
123123完成签到 ,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
specium完成签到,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
汉堡包应助WakinLEO采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671