Research on Camouflage Recognition in Simulated Operational Environment Based on Hyperspectral Imaging Technology

伪装 高光谱成像 人工智能 计算机科学 模式识别(心理学) 支持向量机 VNIR公司 主成分分析 随机森林 像素 遥感 计算机视觉 地理
作者
Donge Zhao,Shu‐Yan Liu,Xuefeng Yang,Yayun Ma,Bin Zhang,Wenbo Chu
出处
期刊:Journal of spectroscopy [Hindawi Limited]
卷期号:2021: 1-9 被引量:10
标识
DOI:10.1155/2021/6629661
摘要

Hyperspectral imaging technology can obtain the spatial information and spectral information of the simulated operational background and its camouflage materials at the same time and identify and classify them according to their differences. In this paper, we collected the hyperspectral images (400–1000 nm) of the desert background, jungle background, desert camouflage netting, jungle camouflage netting, and jungle camouflage clothing through the hyperspectral imaging system, and the samples were preprocessed by denoising and black-and-white correction. Then, we analysed the region of interest (ROI) of the training samples by principal component analysis (PCA). After the pixels in the region of interest and their surrounding areas were averaged, 60% of the data was used as the training samples, and the remaining 40% was used as the test samples. According to their similarities and differences between them and referenced spectrum, the models of classification were established by combining the Naive Bayes (NB) algorithm, K-nearest neighbour (KNN) algorithm, random forest (RF) algorithm, and support vector machine (SVM) algorithm. The results show that among the four models, SVM model has the highest accuracy of classification and the recognition rate of jungle camouflage clothing is the highest. This study verifies the scientific and feasibility of hyperspectral imaging technology for camouflage identification and classification in a simulated operational environment, which has some practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助体贴的小天鹅采纳,获得10
1秒前
Liuying2809发布了新的文献求助10
1秒前
gejinxin给gejinxin的求助进行了留言
2秒前
2秒前
彭于晏应助美满的红酒采纳,获得10
2秒前
彭于晏应助毛健采纳,获得10
2秒前
善学以致用应助JunHan采纳,获得10
3秒前
跳跃发布了新的文献求助10
3秒前
3秒前
黄凯发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
7秒前
Shan发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
充电宝应助zzzz采纳,获得10
9秒前
10秒前
bunny发布了新的文献求助10
10秒前
13秒前
14秒前
JunHan发布了新的文献求助10
14秒前
shlin完成签到,获得积分10
15秒前
15秒前
zz应助摸鱼大王采纳,获得10
16秒前
猪猪hero应助摸鱼大王采纳,获得10
16秒前
wanci应助hh采纳,获得10
16秒前
Owen应助周周采纳,获得10
17秒前
xy820完成签到,获得积分20
18秒前
Shan完成签到,获得积分10
19秒前
天天学习完成签到,获得积分10
20秒前
Zer完成签到,获得积分0
20秒前
20秒前
21秒前
zzzzzz完成签到,获得积分10
21秒前
xy820发布了新的文献求助10
21秒前
22秒前
科研通AI6.1应助深情素阴采纳,获得10
22秒前
23秒前
打打应助小怪兽不吃人采纳,获得10
23秒前
科研通AI6.1应助bunny采纳,获得10
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742790
求助须知:如何正确求助?哪些是违规求助? 5410347
关于积分的说明 15345735
捐赠科研通 4883864
什么是DOI,文献DOI怎么找? 2625403
邀请新用户注册赠送积分活动 1574207
关于科研通互助平台的介绍 1531165