Research on Camouflage Recognition in Simulated Operational Environment Based on Hyperspectral Imaging Technology

伪装 高光谱成像 人工智能 计算机科学 模式识别(心理学) 支持向量机 VNIR公司 主成分分析 随机森林 像素 遥感 计算机视觉 地理
作者
Donge Zhao,Shu‐Yan Liu,Xuefeng Yang,Yayun Ma,Bin Zhang,Wenbo Chu
出处
期刊:Journal of spectroscopy [Hindawi Limited]
卷期号:2021: 1-9 被引量:10
标识
DOI:10.1155/2021/6629661
摘要

Hyperspectral imaging technology can obtain the spatial information and spectral information of the simulated operational background and its camouflage materials at the same time and identify and classify them according to their differences. In this paper, we collected the hyperspectral images (400–1000 nm) of the desert background, jungle background, desert camouflage netting, jungle camouflage netting, and jungle camouflage clothing through the hyperspectral imaging system, and the samples were preprocessed by denoising and black-and-white correction. Then, we analysed the region of interest (ROI) of the training samples by principal component analysis (PCA). After the pixels in the region of interest and their surrounding areas were averaged, 60% of the data was used as the training samples, and the remaining 40% was used as the test samples. According to their similarities and differences between them and referenced spectrum, the models of classification were established by combining the Naive Bayes (NB) algorithm, K-nearest neighbour (KNN) algorithm, random forest (RF) algorithm, and support vector machine (SVM) algorithm. The results show that among the four models, SVM model has the highest accuracy of classification and the recognition rate of jungle camouflage clothing is the highest. This study verifies the scientific and feasibility of hyperspectral imaging technology for camouflage identification and classification in a simulated operational environment, which has some practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
祝卿安发布了新的文献求助10
刚刚
刚刚
pamela发布了新的文献求助10
刚刚
斯文翠发布了新的文献求助10
刚刚
dinosaur发布了新的文献求助10
1秒前
LL爱读书发布了新的文献求助10
2秒前
LingYi完成签到,获得积分10
2秒前
3秒前
ff发布了新的文献求助10
4秒前
辣椒完成签到 ,获得积分10
4秒前
song发布了新的文献求助10
5秒前
科研通AI2S应助明帅采纳,获得10
6秒前
上官若男应助裴果采纳,获得10
7秒前
QTe完成签到,获得积分10
7秒前
飞飞完成签到,获得积分10
7秒前
8秒前
8秒前
Akim应助细心的傥采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得20
9秒前
斯文翠完成签到,获得积分10
9秒前
田様应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
Cunese完成签到,获得积分10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
韩55应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得20
10秒前
guojingjing发布了新的文献求助10
10秒前
lkx发布了新的文献求助10
10秒前
完美世界应助开朗嵩采纳,获得10
10秒前
10秒前
ff完成签到,获得积分10
11秒前
彭于晏应助余香肉丝采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620844
求助须知:如何正确求助?哪些是违规求助? 4705469
关于积分的说明 14932123
捐赠科研通 4763548
什么是DOI,文献DOI怎么找? 2551284
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474712