Registration-Is-Evaluation: Robust Point Set Matching With Multigranular Prior Assessment

计算机科学 稳健性(进化) 离群值 点集注册 人工智能 图像配准 联营 匹配(统计) 模式识别(心理学) 计算机视觉 数据挖掘 算法 点(几何) 数学 图像(数学) 统计 基因 生物化学 化学 几何学
作者
Yucheng Shu,Zhenlong Liao,Bin Xiao,Weisheng Li,Xinbo Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:3
标识
DOI:10.1109/tgrs.2021.3071550
摘要

Point set registration is one of the challenging tasks in remote sensing image processing and analysis. Its critical step is to find the corresponding relationships between the fixed scene point set and the moving model point set that undergo different sorts of transformations. Existing algorithms primarily utilize different types of prior information to improve the registration performance, such as spatial consistency, local similarity, and uniform outliers. However, due to the lack of active evaluation on the prior and intermediate information during the registration process, these strategies are susceptible to large data transformations. In order to enhance the robustness and accuracy for point set registration, we propose in this article a novel framework, namely Registration-is-Evaluation (RisE). Based on a multigranular probability model, our method exploits and utilizes both prior and posterior information to dynamically evaluate the matching status. What is more, instead of adding an extra uniform prior, we unified the outliers, noise, missing points, and heavily warped points into our registration evaluation model and address them simultaneously. We also apply a novel point set descriptor, called local polar relative geometry (LPRG), to have a more robust local similarity measurement. It adopts the local polar coordinate to perform multiscale pooling and relative geometric computation. Based on our proposed method, the matching relationships and the spatial transformations can be actively evaluated to provide useful contextual guidance for the registration process. Experimental results on multiple data sets show that our algorithm outperforms the state-of-the-art methods, in terms of both accuracy and robustness under large data degradations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
听话的亦瑶完成签到,获得积分10
刚刚
勤劳绿柳完成签到,获得积分10
1秒前
ZengJuan发布了新的文献求助10
1秒前
东西南北发布了新的文献求助10
2秒前
张奎完成签到,获得积分10
2秒前
冷冷暴力完成签到,获得积分10
2秒前
酷酷珠发布了新的文献求助10
2秒前
3秒前
南风北至完成签到,获得积分10
3秒前
小乖乖永远在路上完成签到,获得积分10
3秒前
研友_VZG7GZ应助Thi采纳,获得30
4秒前
TINATINA完成签到,获得积分10
4秒前
wh发布了新的文献求助10
4秒前
4秒前
田様应助二号采纳,获得10
5秒前
5秒前
吕健发布了新的文献求助10
5秒前
swordlee发布了新的文献求助30
5秒前
km完成签到,获得积分10
6秒前
思源应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得20
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
fff应助科研通管家采纳,获得10
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Ava应助无忧的阳光采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
fff应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550880
求助须知:如何正确求助?哪些是违规求助? 3127255
关于积分的说明 9373042
捐赠科研通 2826359
什么是DOI,文献DOI怎么找? 1553714
邀请新用户注册赠送积分活动 725051
科研通“疑难数据库(出版商)”最低求助积分说明 714555