清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Blockchain and Federated Learning for Collaborative Intrusion Detection in Vehicular Edge Computing

计算机科学 入侵检测系统 边缘计算 架空(工程) 计算机网络 GSM演进的增强数据速率 分布式计算 计算机安全 操作系统 人工智能
作者
Hong Liu,Shuaipeng Zhang,Pengfei Zhang,Xinqiang Zhou,Xuebin Shao,Geguang Pu,Yan Zhang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:70 (6): 6073-6084 被引量:180
标识
DOI:10.1109/tvt.2021.3076780
摘要

The vehicular networks constructed by interconnected vehicles and transportation infrastructure are vulnerable to cyber-intrusions due to the expanded use of software and the introduction of wireless interfaces. Intrusion detection systems (IDSs) can be customized efficiently in response to this increased attack surface. There has been significant progress in detecting malicious attack traffic using machine learning approaches. However, existing IDSs require network devices with powerful computing capabilities to continuously train and update complex network models, which reduces the efficiency and defense capability of intrusion detection systems due to limited resources and untimely model updates. This work proposes a cooperative intrusion detection mechanism that offloads the training model to distributed edge devices (e.g., connected vehicles and roadside units (RSUs). Distributed federated-based approach reduces resource utilization of the central server while assuring security and privacy. To ensure the security of the aggregation model, blockchain is used for the storage and sharing of the training models. This work analyzes common attacks and shows that the proposed scheme achieves cooperative privacy-preservation for vehicles while reducing communication overhead and computation cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
xiang完成签到,获得积分20
33秒前
48秒前
1分钟前
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
hu完成签到,获得积分10
2分钟前
2分钟前
2分钟前
hu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大雁完成签到 ,获得积分0
2分钟前
老老熊完成签到,获得积分10
3分钟前
Una完成签到,获得积分10
3分钟前
合作完成签到 ,获得积分10
3分钟前
欣欣完成签到,获得积分10
3分钟前
一天完成签到 ,获得积分10
3分钟前
甜甜的静柏完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
奶奶的龙应助科研通管家采纳,获得30
3分钟前
sujingbo完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
你好完成签到 ,获得积分10
5分钟前
5分钟前
结实的寒梦完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
尚青华完成签到 ,获得积分10
5分钟前
5分钟前
123发布了新的文献求助80
5分钟前
5分钟前
mark完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755732
求助须知:如何正确求助?哪些是违规求助? 5498033
关于积分的说明 15381526
捐赠科研通 4893640
什么是DOI,文献DOI怎么找? 2632305
邀请新用户注册赠送积分活动 1580173
关于科研通互助平台的介绍 1536016