Deep learning via ECG and PPG signals for prediction of depth of anesthesia

模式识别(心理学) 人工神经网络 卷积神经网络 脑电图 信号(编程语言) 心率 支持向量机
作者
Meghna Roy Chowdhury,Ravichandra Madanu,Maysam F. Abbod,Shou-Zen Fan,Jiann-Shing Shieh
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102663- 被引量:2
标识
DOI:10.1016/j.bspc.2021.102663
摘要

Abstract During surgeries, the amount of used anesthetic depends on the physical conditions of the patient and is immensely critical. The conventionally used BIS Quantro machine which measures the Bispectral Index (BIS) level in order to help doctors administer anesthesia, is quite expensive. In this paper, an economic, accurate and state-of-the-art technique is presented to predict the depth of anesthesia (DoA) via advanced deep learning models using 512 Hz Electrocardiogram (ECG) and 128 Hz Photoplethysmography (PPG). The study is conducted based on signal collected from 50 patients acquired during surgery at National Taiwan University Hospital (NTUH). First, heatmaps of the ECG and PPG signals (individual and combined subplots) are generated using MATLAB by filtering 5 s windows to match the frequency of the BIS Quantro Machine which is 0.2 Hz. Then, various deep learning models comprising 5, 6, 8, 10 and 19 layered CNNs are trained using data of 40 patients and tested using the remaining 10 patients. The heatmap images of ECG and PPG are fed as inputs to the CNN models separately and using two input channels. The best accuracy achieved is 86 % which is attained using 10 layered CNN with Tensorflow backend, with combined ECG and PPG heatmaps as inputs. This study uses inexpensive signals, minimum data reconstruction, minimum memory and timing constrains to achieve a decent accuracy, and so it can be used by even small hospitals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
harden9159完成签到,获得积分10
刚刚
汉堡包应助唠叨的如冬采纳,获得10
刚刚
汉堡包应助Duke采纳,获得10
1秒前
玔堷应助鱼雷采纳,获得10
2秒前
2秒前
Xin完成签到,获得积分10
3秒前
阳佟冬卉完成签到,获得积分10
3秒前
小二郎应助乙酸乙酯采纳,获得10
4秒前
4秒前
4秒前
Dream完成签到 ,获得积分10
6秒前
CQ完成签到 ,获得积分10
6秒前
6秒前
木木发布了新的文献求助10
8秒前
8秒前
9秒前
LXl发布了新的文献求助10
10秒前
anan完成签到 ,获得积分10
10秒前
科研之光发布了新的文献求助10
11秒前
11秒前
乐乐应助笑点低诗双采纳,获得10
15秒前
16秒前
lbyscu完成签到 ,获得积分10
16秒前
谭平发布了新的文献求助10
17秒前
火星仙人掌完成签到 ,获得积分10
17秒前
18秒前
18秒前
李健的小迷弟应助geoman采纳,获得10
20秒前
zhuzi发布了新的文献求助10
20秒前
CHENJIRU发布了新的文献求助10
21秒前
22秒前
shenerqing完成签到,获得积分10
23秒前
追寻的凡松完成签到,获得积分10
24秒前
易水发布了新的文献求助10
25秒前
隐形的飞雪完成签到,获得积分10
27秒前
传奇3应助trace采纳,获得10
27秒前
笑点低诗双完成签到,获得积分10
31秒前
老Mark完成签到,获得积分10
33秒前
科研通AI5应助看文献的狗采纳,获得10
33秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572102
求助须知:如何正确求助?哪些是违规求助? 3142380
关于积分的说明 9447398
捐赠科研通 2843806
什么是DOI,文献DOI怎么找? 1563098
邀请新用户注册赠送积分活动 731575
科研通“疑难数据库(出版商)”最低求助积分说明 718603