Deep learning via ECG and PPG signals for prediction of depth of anesthesia

模式识别(心理学) 人工神经网络 卷积神经网络 脑电图 信号(编程语言) 心率 支持向量机
作者
Meghna Roy Chowdhury,Ravichandra Madanu,Maysam F. Abbod,Shou-Zen Fan,Jiann-Shing Shieh
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:68: 102663- 被引量:2
标识
DOI:10.1016/j.bspc.2021.102663
摘要

Abstract During surgeries, the amount of used anesthetic depends on the physical conditions of the patient and is immensely critical. The conventionally used BIS Quantro machine which measures the Bispectral Index (BIS) level in order to help doctors administer anesthesia, is quite expensive. In this paper, an economic, accurate and state-of-the-art technique is presented to predict the depth of anesthesia (DoA) via advanced deep learning models using 512 Hz Electrocardiogram (ECG) and 128 Hz Photoplethysmography (PPG). The study is conducted based on signal collected from 50 patients acquired during surgery at National Taiwan University Hospital (NTUH). First, heatmaps of the ECG and PPG signals (individual and combined subplots) are generated using MATLAB by filtering 5 s windows to match the frequency of the BIS Quantro Machine which is 0.2 Hz. Then, various deep learning models comprising 5, 6, 8, 10 and 19 layered CNNs are trained using data of 40 patients and tested using the remaining 10 patients. The heatmap images of ECG and PPG are fed as inputs to the CNN models separately and using two input channels. The best accuracy achieved is 86 % which is attained using 10 layered CNN with Tensorflow backend, with combined ECG and PPG heatmaps as inputs. This study uses inexpensive signals, minimum data reconstruction, minimum memory and timing constrains to achieve a decent accuracy, and so it can be used by even small hospitals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
积极的若山完成签到,获得积分10
1秒前
小小爱心娜完成签到,获得积分10
1秒前
1秒前
lc关注了科研通微信公众号
2秒前
TAC发布了新的文献求助10
2秒前
乌龟娟发布了新的文献求助10
2秒前
nature发布了新的文献求助10
2秒前
斯文败类应助感动的秋玲采纳,获得10
2秒前
Gengar发布了新的文献求助10
3秒前
ARNAMO完成签到,获得积分10
3秒前
zhuazhua完成签到 ,获得积分10
4秒前
霸气鹏飞完成签到,获得积分20
4秒前
香蕉觅云应助研狗要自由采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
战战发布了新的文献求助10
7秒前
sherryginyz完成签到,获得积分10
7秒前
Samuel完成签到 ,获得积分10
7秒前
8秒前
Wwt发布了新的文献求助10
9秒前
SYLH应助Fairyvivi采纳,获得10
9秒前
1111发布了新的文献求助10
10秒前
10秒前
10秒前
ahtj发布了新的文献求助10
10秒前
只谈风月应助音吹采纳,获得10
11秒前
Rina发布了新的文献求助10
11秒前
姜彦乔发布了新的文献求助10
12秒前
唱歌不着调完成签到,获得积分10
12秒前
wanci应助Geng采纳,获得10
13秒前
xiaoting应助功不唐捐采纳,获得10
13秒前
HXie发布了新的文献求助10
13秒前
星辰大海应助1111采纳,获得10
14秒前
14秒前
赘婿应助shelly采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970683
求助须知:如何正确求助?哪些是违规求助? 3515337
关于积分的说明 11178055
捐赠科研通 3250580
什么是DOI,文献DOI怎么找? 1795357
邀请新用户注册赠送积分活动 875790
科研通“疑难数据库(出版商)”最低求助积分说明 805166