已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial Intelligence in Epigenetic Studies: Shedding Light on Rare Diseases

表观遗传学 表观遗传学 药物发现 疾病 数据科学 精密医学 医学 生物信息学 计算生物学 人工智能 计算机科学 生物 DNA甲基化 遗传学 病理 基因 基因表达
作者
Sandra Brasil,Cátia J. Neves,Tatiana Rijoff,Marta Falcão,Gonçalo Valadão,Paula A. Videira,Vanessa dos Reis Ferreira
出处
期刊:Frontiers in Molecular Biosciences [Frontiers Media SA]
卷期号:8 被引量:19
标识
DOI:10.3389/fmolb.2021.648012
摘要

More than 7,000 rare diseases (RDs) exist worldwide, affecting approximately 350 million people, out of which only 5% have treatment. The development of novel genome sequencing techniques has accelerated the discovery and diagnosis in RDs. However, most patients remain undiagnosed. Epigenetics has emerged as a promise for diagnosis and therapies in common disorders (e.g., cancer) with several epimarkers and epidrugs already approved and used in clinical practice. Hence, it may also become an opportunity to uncover new disease mechanisms and therapeutic targets in RDs. In this “big data” age, the amount of information generated, collected, and managed in (bio)medicine is increasing, leading to the need for its rapid and efficient collection, analysis, and characterization. Artificial intelligence (AI), particularly deep learning, is already being successfully applied to analyze genomic information in basic research, diagnosis, and drug discovery and is gaining momentum in the epigenetic field. The application of deep learning to epigenomic studies in RDs could significantly boost discovery and therapy development. This review aims to collect and summarize the application of AI tools in the epigenomic field of RDs. The lower number of studies found, specific for RDs, indicate that this is a field open to expansion, following the results obtained for other more common disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏素速速完成签到,获得积分20
5秒前
6秒前
yumeng完成签到,获得积分10
12秒前
orixero应助尘世的彷徨者采纳,获得10
19秒前
20秒前
蛋炒饭不加蛋完成签到,获得积分10
22秒前
22秒前
24秒前
26秒前
Fairy完成签到,获得积分10
27秒前
28秒前
1111完成签到 ,获得积分10
29秒前
SEAMUS发布了新的文献求助10
29秒前
爱笑迎夏发布了新的文献求助10
31秒前
123发布了新的文献求助10
33秒前
落后妖妖完成签到 ,获得积分10
35秒前
38秒前
HEIKU应助jianghs采纳,获得10
38秒前
野性的小松鼠完成签到 ,获得积分10
39秒前
瞬华完成签到 ,获得积分10
40秒前
酷波er应助shunsui顺遂采纳,获得30
40秒前
feifei完成签到,获得积分10
43秒前
调研昵称发布了新的文献求助30
44秒前
Sew东坡完成签到,获得积分10
44秒前
46秒前
47秒前
怡然的幻灵完成签到,获得积分10
49秒前
可乐发布了新的文献求助10
51秒前
Camellia完成签到,获得积分20
52秒前
JamesPei应助科研通管家采纳,获得10
53秒前
杳鸢应助科研通管家采纳,获得10
53秒前
CipherSage应助科研通管家采纳,获得10
53秒前
53秒前
杳鸢应助科研通管家采纳,获得10
53秒前
杳鸢应助科研通管家采纳,获得10
54秒前
乐乐乐悠完成签到,获得积分10
54秒前
54秒前
54秒前
54秒前
123完成签到,获得积分10
55秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219546
求助须知:如何正确求助?哪些是违规求助? 2868362
关于积分的说明 8160716
捐赠科研通 2535406
什么是DOI,文献DOI怎么找? 1367848
科研通“疑难数据库(出版商)”最低求助积分说明 645094
邀请新用户注册赠送积分活动 618446