MRI-based Nomogram Predicts the Risk of Progression of Unresectable Hepatocellular Carcinoma After Combined Lenvatinib and anti-PD-1 Antibody Therapy

医学 伦瓦提尼 肝细胞癌 内科学 肿瘤科 磁共振成像 索拉非尼 置信区间 列线图 危险系数 比例危险模型 放射科
作者
Ruofan Sheng,Mengsu Zeng,Kaipu Jin,Yunfei Zhang,Dong Wu,Hui‐Chuan Sun
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (6): 819-829 被引量:11
标识
DOI:10.1016/j.acra.2021.09.004
摘要

Combined immune and anti-angiogenic treatment has shown promising results for unresectable hepatocellular carcinoma (HCC), but with a high risk of early progression. In this study, we aimed to investigate whether pre-treatment magnetic resonance imaging (MRI) features and MRI-based nomogram could predict the risk of disease progression of unresectable HCC after first-line lenvatinib/anti-PD-1 antibody therapy.Thirty-seven HCC participants with qualified pre-treatment contrast-enhanced MRI were enrolled. All patients received combined lenvatinib and anti-PD-1 antibody treatment. Progression free survival rate was analyzed using the Kaplan-Meier method. Potential clinical-radiological risk factors for progression were analyzed using the log-rank tests and Cox regression model. The performance of MRI-based nomogram was evaluated based on C-index, calibration, and decision curve analyses.The 6-month and 12-month cumulative progression free survival rates were 59.5% (95% confidence interval (CI), 43.6%-75.4%) and 48.0% (95% CI, 31.7%-64.3%). On multivariate analysis, no or incomplete tumor capsule (hazard ratio (HR) = 15.215 [95% CI 2.707-85.529], p = 0.002), heterogeneous signal on T2-weighted imaging (HR = 28.179 [95% CI 2.437-325.838]; p = 0.008) and arterial contrast-to-noise ratio ≤95.45 (HR = 5.113 [95% CI 1.538-17.00]; p = 0.008) were independent risk factors for disease progression. Satisfactory predictive performance of the nomogram incorporating the three independent imaging features was obtained with a C-index value of 0.880 (95% CI 0.824-0.937), and the combined nomogram had more favorable clinical prediction performance than any single feature.MRI features can be considered effective predictors of disease progression for unresectable HCC with first-line lenvatinib plus anti-PD-1 antibody therapy, and the combined MRI-based nomogram achieved a superior prognostic model, which may help to identify appropriate candidates for the therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实憨厚的笑笑完成签到,获得积分10
刚刚
嘉木发布了新的文献求助10
1秒前
等你下课发布了新的文献求助10
2秒前
2秒前
3秒前
云起龙都发布了新的文献求助10
3秒前
3秒前
北一发布了新的文献求助10
4秒前
Gaojin锦完成签到,获得积分10
5秒前
6秒前
Yuna96发布了新的文献求助30
7秒前
堪怀完成签到,获得积分10
9秒前
胡桃夹馍完成签到,获得积分10
9秒前
没烦恼发布了新的文献求助10
9秒前
11秒前
13秒前
16秒前
充电宝应助不成安火采纳,获得10
17秒前
18秒前
嘉木完成签到,获得积分10
18秒前
18秒前
慕青应助俏皮的豌豆采纳,获得10
19秒前
积德行善SCI无边完成签到,获得积分0
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
20秒前
20秒前
胡j应助冰棒比冰冰采纳,获得10
20秒前
20秒前
21秒前
LinglongCai完成签到 ,获得积分10
22秒前
ET发布了新的文献求助10
24秒前
微笑大雁完成签到,获得积分10
24秒前
24秒前
思源应助坚强的严青采纳,获得10
25秒前
Zoey626发布了新的文献求助10
25秒前
27秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124472
求助须知:如何正确求助?哪些是违规求助? 2774822
关于积分的说明 7723991
捐赠科研通 2430264
什么是DOI,文献DOI怎么找? 1290985
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297