An automatic arrhythmia classification model based on improved Marine Predators Algorithm and Convolutions Neural Networks

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 算法 人工神经网络 机器学习
作者
Essam H. Houssein,M. Hassaballah,Ibrahim E. Ibrahim,Diaa Salama AbdElminaam,Yaser M. Wazery
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:187: 115936-115936 被引量:78
标识
DOI:10.1016/j.eswa.2021.115936
摘要

Preparation of Convolutional Neural Networks (CNNs) for classification purposes depends heavily on the knowledge of hyper-parameters tuning. This study aims, in particular in task of automated electrocardiograms (ECG), to minimize the user variability in the CNN training by searching and optimizing the CNN parameters automatically. In the clinical practice, the task of ECG classification analysis is restricted by existing models’ configuration. The hyper-parameters of the CNN model should be adjusted for the ECG classification problem. The best configuration for hyper-parameters is selected to have an impact on the production of the model. Deep knowledge of deep learning algorithms and suitable optimization techniques are also needed. Although there are many strategies for automated optimization, different benefits and disadvantages occur as they are applied to ECG classification problem. Here we present a CNN model for classification of non-ectopic (N), ventricular ectopic (V), supraventricular ectopic (S), and fusion (F) ECG rhythmias by the hybrid models based on modified version of Marine Predators algorithm (MPA) and CNN, known as the IMPA-CNN. The proposed model summarizes the feature extraction techniques of major features and, thus, outperforms other current classification models through automatically select the best hyper-parameters configuration of the CNN model. To reduce the time and complication complexity, optimum characteristics have been extracted directly from the raw signal using 1D-local binary pattern, higher order statistics, central moment, Hermite basis function discrete wavelet transform, and R–R intervals. Then, a modified version of MPA algorithm is used to select appropriate hyper-parameters for the CNN model like initial learning rate for the CNN model that is one of the major hyper parameters effect output performance, optimizer type which can be set to stochastic gradient descent (SGD), adaptive moment estimation (Adam), root mean square propagation (RMSprop), the activation function form used for modeling non-linear functions, set to ‘Rectified Linear Unit (ReLU), or ‘sigmoid’ and some other hyper-parameters are related to the optimization and training process of CNN model. Many available optimization algorithms for hyper-parameters optimization problems are provided. In addition, experiments with well know data sets like MIT-BIH arrhythmia, European ST-T database, and St. Petersburg INCART database are carried out to compare the performance of various optimization approaches and to provide practical illustration of the optimization of hyper-parameters for the proposed CNN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桤木应助杰小瑞采纳,获得50
刚刚
1秒前
1秒前
握手完成签到,获得积分20
1秒前
SCI发发发发布了新的文献求助10
1秒前
科研门外汉完成签到,获得积分10
1秒前
1秒前
元谷雪发布了新的文献求助10
1秒前
小透明发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
oi发布了新的文献求助30
2秒前
2秒前
善学以致用应助Cici采纳,获得10
2秒前
3秒前
烟花应助ffff采纳,获得10
3秒前
Dog完成签到,获得积分10
3秒前
热情的水杯完成签到,获得积分10
3秒前
3秒前
小满发布了新的文献求助10
4秒前
平家boy完成签到,获得积分10
4秒前
ddy发布了新的文献求助10
4秒前
wanci应助冷傲迎梦采纳,获得10
4秒前
裴帅龙关注了科研通微信公众号
5秒前
5秒前
天天快乐应助Lin采纳,获得10
5秒前
金元宝发布了新的文献求助10
6秒前
DM发布了新的文献求助10
6秒前
6秒前
博弈春秋发布了新的文献求助10
6秒前
7秒前
桐桐应助琉璃果冻采纳,获得30
7秒前
7秒前
桔梗发布了新的文献求助10
8秒前
8秒前
8秒前
阳小颖完成签到,获得积分10
8秒前
万能图书馆应助Wendyya采纳,获得10
9秒前
10秒前
牛X发布了新的文献求助10
11秒前
南瓜汤完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3515939
关于积分的说明 11180280
捐赠科研通 3251061
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805209