An automatic arrhythmia classification model based on improved Marine Predators Algorithm and Convolutions Neural Networks

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 算法 人工神经网络 机器学习
作者
Essam H. Houssein,M. Hassaballah,Ibrahim E. Ibrahim,Diaa Salama AbdElminaam,Yaser M. Wazery
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:187: 115936-115936 被引量:78
标识
DOI:10.1016/j.eswa.2021.115936
摘要

Preparation of Convolutional Neural Networks (CNNs) for classification purposes depends heavily on the knowledge of hyper-parameters tuning. This study aims, in particular in task of automated electrocardiograms (ECG), to minimize the user variability in the CNN training by searching and optimizing the CNN parameters automatically. In the clinical practice, the task of ECG classification analysis is restricted by existing models’ configuration. The hyper-parameters of the CNN model should be adjusted for the ECG classification problem. The best configuration for hyper-parameters is selected to have an impact on the production of the model. Deep knowledge of deep learning algorithms and suitable optimization techniques are also needed. Although there are many strategies for automated optimization, different benefits and disadvantages occur as they are applied to ECG classification problem. Here we present a CNN model for classification of non-ectopic (N), ventricular ectopic (V), supraventricular ectopic (S), and fusion (F) ECG rhythmias by the hybrid models based on modified version of Marine Predators algorithm (MPA) and CNN, known as the IMPA-CNN. The proposed model summarizes the feature extraction techniques of major features and, thus, outperforms other current classification models through automatically select the best hyper-parameters configuration of the CNN model. To reduce the time and complication complexity, optimum characteristics have been extracted directly from the raw signal using 1D-local binary pattern, higher order statistics, central moment, Hermite basis function discrete wavelet transform, and R–R intervals. Then, a modified version of MPA algorithm is used to select appropriate hyper-parameters for the CNN model like initial learning rate for the CNN model that is one of the major hyper parameters effect output performance, optimizer type which can be set to stochastic gradient descent (SGD), adaptive moment estimation (Adam), root mean square propagation (RMSprop), the activation function form used for modeling non-linear functions, set to ‘Rectified Linear Unit (ReLU), or ‘sigmoid’ and some other hyper-parameters are related to the optimization and training process of CNN model. Many available optimization algorithms for hyper-parameters optimization problems are provided. In addition, experiments with well know data sets like MIT-BIH arrhythmia, European ST-T database, and St. Petersburg INCART database are carried out to compare the performance of various optimization approaches and to provide practical illustration of the optimization of hyper-parameters for the proposed CNN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leeyh发布了新的文献求助10
刚刚
华仔应助leslie采纳,获得10
1秒前
柿子发布了新的文献求助10
1秒前
2秒前
打打应助JIANGNANYAN采纳,获得10
2秒前
舒心储完成签到,获得积分10
4秒前
熹熹完成签到,获得积分10
4秒前
now发布了新的文献求助10
4秒前
Vvvmi发布了新的文献求助10
4秒前
锦鲤煲粥完成签到 ,获得积分10
7秒前
sh完成签到,获得积分10
8秒前
kavins凯旋完成签到,获得积分10
9秒前
科研通AI6应助七七采纳,获得10
10秒前
DH完成签到 ,获得积分10
10秒前
独特跳跳糖完成签到 ,获得积分10
12秒前
Lilies完成签到 ,获得积分10
12秒前
14秒前
h3m完成签到,获得积分10
14秒前
小明应助KM比比采纳,获得30
14秒前
16秒前
17秒前
17秒前
天天向上发布了新的文献求助10
19秒前
19秒前
量子星尘发布了新的文献求助10
22秒前
OoOo完成签到 ,获得积分10
22秒前
Perhy完成签到,获得积分20
22秒前
chen发布了新的文献求助10
22秒前
思zj发布了新的文献求助10
22秒前
Zjn-完成签到 ,获得积分10
22秒前
大模型应助jli1856采纳,获得10
23秒前
23秒前
甜蜜的白风完成签到,获得积分10
24秒前
彭于晏应助周艳鸿采纳,获得10
24秒前
25秒前
Perhy发布了新的文献求助10
25秒前
25秒前
ZZZkn关注了科研通微信公众号
26秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968638
求助须知:如何正确求助?哪些是违规求助? 4225941
关于积分的说明 13161018
捐赠科研通 4013031
什么是DOI,文献DOI怎么找? 2195868
邀请新用户注册赠送积分活动 1209298
关于科研通互助平台的介绍 1123338