An automatic arrhythmia classification model based on improved Marine Predators Algorithm and Convolutions Neural Networks

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 算法 人工神经网络 机器学习
作者
Essam H. Houssein,M. Hassaballah,Ibrahim E. Ibrahim,Diaa Salama AbdElminaam,Yaser M. Wazery
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:187: 115936-115936 被引量:69
标识
DOI:10.1016/j.eswa.2021.115936
摘要

Preparation of Convolutional Neural Networks (CNNs) for classification purposes depends heavily on the knowledge of hyper-parameters tuning. This study aims, in particular in task of automated electrocardiograms (ECG), to minimize the user variability in the CNN training by searching and optimizing the CNN parameters automatically. In the clinical practice, the task of ECG classification analysis is restricted by existing models’ configuration. The hyper-parameters of the CNN model should be adjusted for the ECG classification problem. The best configuration for hyper-parameters is selected to have an impact on the production of the model. Deep knowledge of deep learning algorithms and suitable optimization techniques are also needed. Although there are many strategies for automated optimization, different benefits and disadvantages occur as they are applied to ECG classification problem. Here we present a CNN model for classification of non-ectopic (N), ventricular ectopic (V), supraventricular ectopic (S), and fusion (F) ECG rhythmias by the hybrid models based on modified version of Marine Predators algorithm (MPA) and CNN, known as the IMPA-CNN. The proposed model summarizes the feature extraction techniques of major features and, thus, outperforms other current classification models through automatically select the best hyper-parameters configuration of the CNN model. To reduce the time and complication complexity, optimum characteristics have been extracted directly from the raw signal using 1D-local binary pattern, higher order statistics, central moment, Hermite basis function discrete wavelet transform, and R–R intervals. Then, a modified version of MPA algorithm is used to select appropriate hyper-parameters for the CNN model like initial learning rate for the CNN model that is one of the major hyper parameters effect output performance, optimizer type which can be set to stochastic gradient descent (SGD), adaptive moment estimation (Adam), root mean square propagation (RMSprop), the activation function form used for modeling non-linear functions, set to ‘Rectified Linear Unit (ReLU), or ‘sigmoid’ and some other hyper-parameters are related to the optimization and training process of CNN model. Many available optimization algorithms for hyper-parameters optimization problems are provided. In addition, experiments with well know data sets like MIT-BIH arrhythmia, European ST-T database, and St. Petersburg INCART database are carried out to compare the performance of various optimization approaches and to provide practical illustration of the optimization of hyper-parameters for the proposed CNN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zjn-完成签到,获得积分10
刚刚
良辰应助lost采纳,获得10
刚刚
靓丽梦桃完成签到,获得积分20
1秒前
1秒前
0306完成签到,获得积分10
1秒前
李创业完成签到,获得积分10
1秒前
庆次完成签到 ,获得积分10
2秒前
ZY发布了新的文献求助10
2秒前
36456657应助跳跃的罡采纳,获得10
2秒前
36456657应助跳跃的罡采纳,获得10
2秒前
pluto应助跳跃的罡采纳,获得10
2秒前
丘比特应助跳跃的罡采纳,获得10
2秒前
2秒前
左手树完成签到,获得积分10
3秒前
3秒前
踏实的似狮完成签到,获得积分10
3秒前
正直画笔完成签到 ,获得积分10
3秒前
草履虫完成签到 ,获得积分10
4秒前
靓丽梦桃发布了新的文献求助10
4秒前
李创业发布了新的文献求助10
5秒前
炙热冰夏发布了新的文献求助10
5秒前
autobot1完成签到,获得积分10
5秒前
科研通AI5应助111采纳,获得10
5秒前
烟花应助Wang采纳,获得10
5秒前
曼尼发布了新的文献求助10
5秒前
赘婿应助桑姊采纳,获得10
7秒前
斯文败类应助Lvj采纳,获得10
7秒前
SYLH应助YHL采纳,获得10
7秒前
ranqi完成签到,获得积分10
7秒前
7秒前
8秒前
17808352679发布了新的文献求助10
8秒前
易生完成签到,获得积分10
9秒前
细腻曼冬完成签到 ,获得积分10
9秒前
9秒前
9秒前
9209完成签到 ,获得积分10
9秒前
10秒前
ranqi发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762