An automatic arrhythmia classification model based on improved Marine Predators Algorithm and Convolutions Neural Networks

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 算法 人工神经网络 机器学习
作者
Essam H. Houssein,M. Hassaballah,Ibrahim E. Ibrahim,Diaa Salama AbdElminaam,Yaser M. Wazery
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:187: 115936-115936 被引量:78
标识
DOI:10.1016/j.eswa.2021.115936
摘要

Preparation of Convolutional Neural Networks (CNNs) for classification purposes depends heavily on the knowledge of hyper-parameters tuning. This study aims, in particular in task of automated electrocardiograms (ECG), to minimize the user variability in the CNN training by searching and optimizing the CNN parameters automatically. In the clinical practice, the task of ECG classification analysis is restricted by existing models’ configuration. The hyper-parameters of the CNN model should be adjusted for the ECG classification problem. The best configuration for hyper-parameters is selected to have an impact on the production of the model. Deep knowledge of deep learning algorithms and suitable optimization techniques are also needed. Although there are many strategies for automated optimization, different benefits and disadvantages occur as they are applied to ECG classification problem. Here we present a CNN model for classification of non-ectopic (N), ventricular ectopic (V), supraventricular ectopic (S), and fusion (F) ECG rhythmias by the hybrid models based on modified version of Marine Predators algorithm (MPA) and CNN, known as the IMPA-CNN. The proposed model summarizes the feature extraction techniques of major features and, thus, outperforms other current classification models through automatically select the best hyper-parameters configuration of the CNN model. To reduce the time and complication complexity, optimum characteristics have been extracted directly from the raw signal using 1D-local binary pattern, higher order statistics, central moment, Hermite basis function discrete wavelet transform, and R–R intervals. Then, a modified version of MPA algorithm is used to select appropriate hyper-parameters for the CNN model like initial learning rate for the CNN model that is one of the major hyper parameters effect output performance, optimizer type which can be set to stochastic gradient descent (SGD), adaptive moment estimation (Adam), root mean square propagation (RMSprop), the activation function form used for modeling non-linear functions, set to ‘Rectified Linear Unit (ReLU), or ‘sigmoid’ and some other hyper-parameters are related to the optimization and training process of CNN model. Many available optimization algorithms for hyper-parameters optimization problems are provided. In addition, experiments with well know data sets like MIT-BIH arrhythmia, European ST-T database, and St. Petersburg INCART database are carried out to compare the performance of various optimization approaches and to provide practical illustration of the optimization of hyper-parameters for the proposed CNN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SYLH应助WangZhen采纳,获得10
1秒前
福尔摩云完成签到,获得积分10
2秒前
无辜的秀完成签到,获得积分10
3秒前
Charles完成签到,获得积分10
5秒前
hao发布了新的文献求助10
5秒前
小嘎发布了新的文献求助10
5秒前
ABin完成签到,获得积分10
7秒前
Jasper应助qixiaoqi采纳,获得10
7秒前
FangyingTang完成签到 ,获得积分10
8秒前
金枪鱼子完成签到,获得积分10
8秒前
theyoung发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
赘婿应助liu采纳,获得10
9秒前
小马甲应助清仔采纳,获得10
9秒前
9秒前
luoyue完成签到,获得积分10
9秒前
yuan发布了新的文献求助10
10秒前
科研通AI5应助JR采纳,获得30
10秒前
11秒前
海阔天空发布了新的文献求助10
12秒前
SYLH应助WangZhen采纳,获得10
12秒前
票子发布了新的文献求助10
12秒前
苹果柜子完成签到 ,获得积分10
12秒前
活泼的平灵完成签到,获得积分10
13秒前
愤怒的咖啡完成签到,获得积分10
13秒前
愉快的银耳汤完成签到,获得积分10
14秒前
又又完成签到,获得积分10
15秒前
ypres完成签到 ,获得积分10
16秒前
16秒前
16秒前
zzzk完成签到 ,获得积分10
16秒前
酒精过敏完成签到,获得积分10
16秒前
席冥完成签到,获得积分10
18秒前
19秒前
搜集达人应助可乐采纳,获得10
19秒前
20秒前
清仔发布了新的文献求助10
20秒前
kevin发布了新的文献求助10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066