An automatic arrhythmia classification model based on improved Marine Predators Algorithm and Convolutions Neural Networks

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 算法 人工神经网络 机器学习
作者
Essam H. Houssein,M. Hassaballah,Ibrahim E. Ibrahim,Diaa Salama AbdElminaam,Yaser M. Wazery
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:187: 115936-115936 被引量:69
标识
DOI:10.1016/j.eswa.2021.115936
摘要

Preparation of Convolutional Neural Networks (CNNs) for classification purposes depends heavily on the knowledge of hyper-parameters tuning. This study aims, in particular in task of automated electrocardiograms (ECG), to minimize the user variability in the CNN training by searching and optimizing the CNN parameters automatically. In the clinical practice, the task of ECG classification analysis is restricted by existing models’ configuration. The hyper-parameters of the CNN model should be adjusted for the ECG classification problem. The best configuration for hyper-parameters is selected to have an impact on the production of the model. Deep knowledge of deep learning algorithms and suitable optimization techniques are also needed. Although there are many strategies for automated optimization, different benefits and disadvantages occur as they are applied to ECG classification problem. Here we present a CNN model for classification of non-ectopic (N), ventricular ectopic (V), supraventricular ectopic (S), and fusion (F) ECG rhythmias by the hybrid models based on modified version of Marine Predators algorithm (MPA) and CNN, known as the IMPA-CNN. The proposed model summarizes the feature extraction techniques of major features and, thus, outperforms other current classification models through automatically select the best hyper-parameters configuration of the CNN model. To reduce the time and complication complexity, optimum characteristics have been extracted directly from the raw signal using 1D-local binary pattern, higher order statistics, central moment, Hermite basis function discrete wavelet transform, and R–R intervals. Then, a modified version of MPA algorithm is used to select appropriate hyper-parameters for the CNN model like initial learning rate for the CNN model that is one of the major hyper parameters effect output performance, optimizer type which can be set to stochastic gradient descent (SGD), adaptive moment estimation (Adam), root mean square propagation (RMSprop), the activation function form used for modeling non-linear functions, set to ‘Rectified Linear Unit (ReLU), or ‘sigmoid’ and some other hyper-parameters are related to the optimization and training process of CNN model. Many available optimization algorithms for hyper-parameters optimization problems are provided. In addition, experiments with well know data sets like MIT-BIH arrhythmia, European ST-T database, and St. Petersburg INCART database are carried out to compare the performance of various optimization approaches and to provide practical illustration of the optimization of hyper-parameters for the proposed CNN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
1秒前
开朗的驳完成签到,获得积分10
1秒前
思源应助Lizhe采纳,获得10
1秒前
Qi关注了科研通微信公众号
1秒前
Lucas应助司徒无剑采纳,获得10
2秒前
咸鱼飞飞飞完成签到,获得积分10
2秒前
柯柯完成签到 ,获得积分10
2秒前
周星星发布了新的文献求助10
2秒前
2秒前
阉太狼完成签到,获得积分10
3秒前
3秒前
SHENYANG发布了新的文献求助10
4秒前
cyyan完成签到,获得积分10
5秒前
5秒前
开心听露完成签到,获得积分10
5秒前
冷静的访天完成签到 ,获得积分10
6秒前
自由的曼青完成签到,获得积分10
7秒前
hyx-dentist发布了新的文献求助10
8秒前
乔治哇完成签到 ,获得积分10
8秒前
小杨完成签到,获得积分10
9秒前
爆米花应助乐乐采纳,获得10
10秒前
热情飞绿发布了新的文献求助10
10秒前
ppboyindream完成签到,获得积分10
10秒前
无花果应助聂学雨采纳,获得10
11秒前
12秒前
啦啦啦~完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
13秒前
SHENYANG完成签到,获得积分10
14秒前
14秒前
默默向雪完成签到,获得积分10
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825