Arrhythmia classification of LSTM autoencoder based on time series anomaly detection

自编码 心跳 计算机科学 人工智能 预处理器 模式识别(心理学) 异常检测 信号(编程语言) 右束支阻滞 心电图 深度学习 心脏病学 医学 计算机安全 程序设计语言
作者
Pengfei Liu,Xiaoming Sun,Yang Han,Zhishuai He,Weifeng Zhang,Chenxu Wu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:71: 103228-103228 被引量:82
标识
DOI:10.1016/j.bspc.2021.103228
摘要

Electrocardiogram (ECG) is widely used in the diagnosis of heart disease because of its noninvasiveness and simplicity. The time series signals contained in the signal are usually obtained by the professional medical staff and used for the classification of heartbeat diagnosis. Professional physicians can use the electrocardiogram to know whether the patient has serious congenital heart disease and whether there is an abnormal heart structure. A lot of work has been done to achieve automatic classification of arrhythmia types. For example, Autoencoder can obtain the time series characteristics of ECG signals and be used for ECG signal classification. However, some traditional methods are abstruse and difficult to understand in principle. In the classification of arrhythmias carried out in recent years, some researchers only use Autoencoder to provide structural characteristics, without giving too much explanation to the design reasons. Therefore, we optimized a new network layer design based on LSTM to obtain the autoencoder structure. This structure can cooperate with the ECG preprocessing process designed by us to obtain better arrhythmia classification effect. This method enables direct input of ECG signals into the model without complicated preprocessing such as manual parameter input. Also, it eliminates the gradient vanishing problem existing in traditional convolutional neural network. We used five different types of ECG data in MIT-BIH arrhythmia database and MIT-BIH supraventricular arrhythmia database: atrial premature beats (APB), left bundle branch block (LBBB), normal heartbeat (NSR), right bundle branch block (RBBB) and ventricular premature beats (PVC). High accuracy, precision and recall were obtained. Compared with traditional methods, this method has better performance in arrhythmia classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容谷菱完成签到,获得积分10
刚刚
helen发布了新的文献求助10
1秒前
Feifei133发布了新的文献求助30
2秒前
4秒前
水论文的云宝黛西关注了科研通微信公众号
5秒前
6秒前
尖尖发布了新的文献求助10
6秒前
Lzt关闭了Lzt文献求助
8秒前
搞一篇SCI完成签到,获得积分10
9秒前
10秒前
AswinnLyu发布了新的文献求助10
10秒前
10秒前
12秒前
yue957完成签到 ,获得积分10
13秒前
13秒前
尖尖完成签到,获得积分10
15秒前
向北游发布了新的文献求助10
15秒前
深情安青应助Mayday采纳,获得10
15秒前
可可完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
18秒前
Hello应助朱zz采纳,获得10
18秒前
18秒前
许熙完成签到,获得积分10
18秒前
大气的fgyyhjj完成签到 ,获得积分10
19秒前
东风完成签到,获得积分10
19秒前
小唐发布了新的文献求助10
20秒前
酷波er应助loong采纳,获得10
24秒前
25秒前
26秒前
26秒前
27秒前
雪雪儿发布了新的文献求助10
27秒前
梅竹完成签到,获得积分10
28秒前
29秒前
开朗的早晨完成签到,获得积分10
30秒前
小佳发布了新的文献求助10
30秒前
朱zz发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341