CentralNet Method for Human motion Recognition Based on Multi-feature Fusion of Millimeter Wave Radar

计算机科学 人工智能 光谱图 雷达 计算机视觉 特征提取 极高频率 稳健性(进化) 特征(语言学) 保险丝(电气) 数据集 模式识别(心理学) 工程类 电信 生物化学 化学 语言学 哲学 电气工程 基因
作者
Yue Zhao,Wen Hu
标识
DOI:10.1109/icspcc52875.2021.9564487
摘要

In this research, we propose a human motion recognition method based on multi-feature fusion of millimeter Wave(mmWave) radar, which is implemented by CentralNet. Aiming at solving the problems that the method based on camera is susceptible to light and weather, and the flexibility of wearable devices is poor. Methods: Firstly, Radar data of moving human body is collected by millimeter-wave radar, and then we obtain Micro-Doppler Spectrogram(MDS) and Candence-Velocity Diagram(CVD) through time-frequency analysis of received signal. Next, the MDS and CVD were respectively put into the subnetwork of CentralNet which is a neural network designed to achieve feature fusion. Finally, we can implement human motion recognition through CentralNet. Result: The test data set verified that the proposed method could achieve classification of five kinds of human motions with accuracy of 98.96%. Conclusion: MDS and CVD are suited for extracting time-frequency features of signal. And CentralNet can effectively fuse multiple features, which leads to well classification performance. Significance: Compared to camera and wearable devices, human motion recognition based on radar has shown advantages in terms of accuracy, privacy, and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
1秒前
潺潺流水完成签到,获得积分10
3秒前
4秒前
sunny完成签到,获得积分10
4秒前
过时的广山完成签到 ,获得积分10
5秒前
xjian发布了新的文献求助10
6秒前
dwfwq完成签到,获得积分10
6秒前
橙子完成签到 ,获得积分10
7秒前
7秒前
11发布了新的文献求助10
7秒前
科目三应助酷朝熙采纳,获得10
7秒前
俭朴寒天发布了新的文献求助10
8秒前
科研小趴菜完成签到,获得积分10
8秒前
郑朗逸完成签到,获得积分10
8秒前
9秒前
博文强识完成签到,获得积分10
10秒前
梦漓完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
zsp完成签到,获得积分10
11秒前
并不瑶远完成签到 ,获得积分10
12秒前
12秒前
TB发布了新的文献求助10
12秒前
12秒前
jiaqiLi发布了新的文献求助10
12秒前
meteor完成签到,获得积分10
13秒前
guozizi应助闹闹采纳,获得100
14秒前
datang完成签到,获得积分10
17秒前
wzz发布了新的文献求助30
17秒前
112345完成签到 ,获得积分10
18秒前
kai发布了新的文献求助10
18秒前
jj发布了新的文献求助10
19秒前
19秒前
爆米花应助潺潺流水采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
22秒前
mmichaell应助科研通管家采纳,获得10
22秒前
shhoing应助科研通管家采纳,获得10
22秒前
蓝天应助LSX采纳,获得10
22秒前
爱咋咋地完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539853
求助须知:如何正确求助?哪些是违规求助? 4626579
关于积分的说明 14600087
捐赠科研通 4567560
什么是DOI,文献DOI怎么找? 2504090
邀请新用户注册赠送积分活动 1481781
关于科研通互助平台的介绍 1453418