软骨细胞
细胞凋亡
活力测定
内质网
未折叠蛋白反应
MTT法
化学
毒素
细胞生物学
切碎
分子生物学
生物
体外
生物化学
作者
Yinan Liu,Yudong Mu,Hui Wang,Meng Zhang,Yawen Shi,Ge Mi,Lei-Xuan Peng,Jinghong Chen
出处
期刊:Toxicology
[Elsevier]
日期:2021-12-01
卷期号:464: 152989-152989
被引量:11
标识
DOI:10.1016/j.tox.2021.152989
摘要
T-2 toxin leads to chondrocyte apoptosis and excessive extracellular matrix degradation. The aim of this study is to investigate if endoplasmic reticulum stress (ERS) - initiated apoptosis is involved in the chondrocyte damage induced by T-2 toxin. In vivo, rats were divided into a control group, T-2 toxin 200 ng/g BW/d group, the protein levels of GRP78, CHOP, and caspase-12 were detected using immunohistochemistry in articular cartilage tissues. In vitro, C28/I2 and ATDC5 chondrocytes were treated with various concentrations of T-2 toxin. For the salubrinal protection assay, cells were pretreated with 20 μM salubrinal for 1 h, and treated with and without T-2 toxin for 24 h. The cell viability was determined using the MTT assay; and the cell apoptosis was determined using the Flow Cytometry Assay; the mRNA and protein levels of the ERS markers and ECM were determined using RT-PCR and western blotting. This study found that the expressions of GRP78, CHOP, and caspase-12 is higher in T-2 toxin group than in control group both in vivo and in vitro, and the T-2 toxin administration promoted chondrocyte apoptosis, suppressed matrix synthesis, and accelerated cellular catabolism via the ERS signaling pathway. In addition, this study found that salubrinal prevented chondrocyte injury by inhibiting ERS-mediated apoptosis via the PERK-eIF2α-ATF4-CHOP signaling pathway. Collectively, this study provides a new clue to elucidate the mechanism of T-2 toxin-induced chondrocyte damage, and presents a novel therapeutic possibility of salubrinal for Osteoarthropathy such as osteoarthritis (OA) and Kaschin-Beck disease (KBD).
科研通智能强力驱动
Strongly Powered by AbleSci AI