清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning for bone marrow cell detection and classification on whole-slide images

深度学习 计算机科学 人工智能 放大倍数 骨髓 图像拼接 模式识别(心理学) 鉴定(生物学) 细胞计数 感兴趣区域 病理 细胞 医学 生物 细胞周期 遗传学 植物
作者
Ching‐Wei Wang,Sheng-Chuan Huang,Yu‐Ching Lee,Yujie Shen,Shwu-Ing Meng,Jeff L. Gaol
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102270-102270 被引量:63
标识
DOI:10.1016/j.media.2021.102270
摘要

Bone marrow (BM) examination is an essential step in both diagnosing and managing numerous hematologic disorders. BM nucleated differential count (NDC) analysis, as part of BM examination, holds the most fundamental and crucial information. However, there are many challenges to perform automated BM NDC analysis on whole-slide images (WSIs), including large dimensions of data to process, complicated cell types with subtle differences. To the authors best knowledge, this is the first study on fully automatic BM NDC using WSIs with 40x objective magnification, which can replace traditional manual counting relying on light microscopy via oil-immersion 100x objective lens with a total 1000x magnification. In this study, we develop an efficient and fully automatic hierarchical deep learning framework for BM NDC WSI analysis in seconds. The proposed hierarchical framework consists of (1) a deep learning model for rapid localization of BM particles and cellular trails generating regions of interest (ROI) for further analysis, (2) a patch-based deep learning model for cell identification of 16 cell types, including megakaryocytes, mitotic cells, and four stages of erythroblasts which have not been demonstrated in previous studies before, and (3) a fast stitching model for integrating patch-based results and producing final outputs. In evaluation, the proposed method is firstly tested on a dataset with a total of 12,426 annotated cells using cross validation, achieving high recall and accuracy of 0.905 ± 0.078 and 0.989 ± 0.006, respectively, and taking only 44 seconds to perform BM NDC analysis for a WSI. To further examine the generalizability of our model, we conduct an evaluation on the second independent dataset with a total of 3005 cells, and the results show that the proposed method also obtains high recall and accuracy of 0.842 and 0.988, respectively. In comparison with the existing small-image-based benchmark methods, the proposed method demonstrates superior performance in recall, accuracy and computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安安完成签到 ,获得积分10
9秒前
Perry完成签到,获得积分10
12秒前
19秒前
tigger完成签到 ,获得积分10
50秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
1分钟前
1分钟前
lyric发布了新的文献求助30
1分钟前
1分钟前
2分钟前
2分钟前
刘刘完成签到 ,获得积分10
3分钟前
凌露完成签到 ,获得积分0
3分钟前
lyric完成签到,获得积分10
3分钟前
wickedzz完成签到,获得积分10
3分钟前
认真的画板完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
daidai完成签到 ,获得积分10
5分钟前
小阿博发布了新的文献求助10
5分钟前
从容芮应助Jerry采纳,获得10
5分钟前
斯文败类应助小阿博采纳,获得10
5分钟前
poki完成签到 ,获得积分10
5分钟前
zxt完成签到,获得积分10
5分钟前
wyz完成签到 ,获得积分10
6分钟前
6分钟前
香蕉觅云应助小阿博采纳,获得10
6分钟前
房天川完成签到 ,获得积分10
6分钟前
元神完成签到 ,获得积分10
6分钟前
6分钟前
巴巴爸爸和他的孩子们完成签到,获得积分10
7分钟前
7分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
7分钟前
小阿博发布了新的文献求助10
7分钟前
7分钟前
7分钟前
小阿博发布了新的文献求助10
7分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311215
求助须知:如何正确求助?哪些是违规求助? 2943920
关于积分的说明 8516766
捐赠科研通 2619310
什么是DOI,文献DOI怎么找? 1432227
科研通“疑难数据库(出版商)”最低求助积分说明 664536
邀请新用户注册赠送积分活动 649815