An improved feature extraction algorithms of EEG signals based on motor imagery brain-computer interface

计算机科学 独立成分分析 脑电图 脑-机接口 人工智能 模式识别(心理学) 噪音(视频) 特征提取 小波 特征(语言学) 过程(计算) 算法 接口(物质) 语音识别 图像(数学) 精神科 最大气泡压力法 哲学 操作系统 气泡 语言学 并行计算 心理学
作者
Xiaozhong Geng,Dezhi Li,Hanlin Chen,Ping Yu,Hui Yan,Mengzhe Yue
出处
期刊:alexandria engineering journal [Elsevier BV]
卷期号:61 (6): 4807-4820 被引量:23
标识
DOI:10.1016/j.aej.2021.10.034
摘要

The electroencephalogram (EEG) signals based on the Brian-computer Interface (BCI) equipment is weak, non-linear, non-stationary and time-varying, so an effective feature extraction method is the key to improving the recognition accuracy. Electrooculogram and electrocardiogram artifacts are common noises in the process of EEG signals acquisition, it seriously affects the extraction of useful information. This paper proposes a processing method on EEG signals by combing independent component analysis (ICA), wavelet transform (WT) and common spatial pattern (CSP). First, the independent component analysis algorithm is used to break the EEG signals into independent components; and then these independent components are decomposed by WT to obtain the wavelet coefficient of each independent source. The soft and hard compromise threshold function is used to process the wavelet packet coefficients. Then the CSP algorithm is used to extract the features of the denoised EEG data. Finally, four common classification algorithms are used for classification to verify the effectiveness of the improved algorithm. The experimental results show that the EEG signals processed by the proposed method has obvious advantages in identify and remove electrooculogram (EOG) and electrocardiogram (ECG) artifacts, meanwhile, it can preserve the neural activity that is missed in the noise component. Cross-comparison experiments also proved that the proposed method has higher classification accuracy than other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茅十八完成签到,获得积分10
刚刚
dqhahaha发布了新的文献求助10
1秒前
SYLH应助xfffffff采纳,获得10
1秒前
wanci应助xfffffff采纳,获得10
1秒前
西西完成签到,获得积分10
2秒前
上善若水666完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
ZoeChoo完成签到,获得积分10
3秒前
kk完成签到,获得积分10
3秒前
4秒前
千里江山一只蝇完成签到,获得积分10
4秒前
吃的饭广泛发布了新的文献求助200
5秒前
庾傀斗发布了新的文献求助10
5秒前
Warten995完成签到,获得积分10
5秒前
5秒前
chouchou完成签到,获得积分10
6秒前
点墨完成签到 ,获得积分10
6秒前
COCO发布了新的文献求助10
7秒前
zq完成签到,获得积分20
8秒前
热心冷亦发布了新的文献求助10
9秒前
Daisy完成签到,获得积分10
9秒前
9秒前
梵莫完成签到,获得积分10
10秒前
LX发布了新的文献求助10
10秒前
庾傀斗完成签到,获得积分10
10秒前
10秒前
11秒前
CodeCraft应助guanshujuan采纳,获得10
11秒前
SciGPT应助夏天采纳,获得10
11秒前
棋士应助蓝胖子采纳,获得20
11秒前
wysy发布了新的文献求助10
11秒前
JamesPei应助zhc采纳,获得10
12秒前
12秒前
12秒前
加贝完成签到,获得积分10
12秒前
猪肉水饺发布了新的文献求助10
12秒前
我劝告了风完成签到,获得积分10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951389
求助须知:如何正确求助?哪些是违规求助? 3496717
关于积分的说明 11084234
捐赠科研通 3227173
什么是DOI,文献DOI怎么找? 1784313
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801110