地质学
俯冲
结壳
地球化学
岩浆作用
地幔(地质学)
底镀
古生代
大陆地壳
岩浆
玄武岩
火成岩
构造学
部分熔融
岩石学
古生物学
火山
作者
Fang An,Yongfeng Zhu,Shaoni Wei,Hong Zhang,Lei Zhao
标识
DOI:10.1080/00206814.2021.1961103
摘要
The variation of crustal thickness of an orogenic belt through time will provide critical insights into the switch of tectonic setting. The geochemistry of subduction and collision-related magmatism is indicative of the crustal thickness. Late Palaeozoic magmatic products are prevalent in central west Junggar orogenic belt (C-WJOB), and can be employed to determine the temporal changes in crustal thickness as well as the tectonic evolution. Here, we constrain the crustal thickness and discuss the tectonic evolution of C-WJOB through by integrating Sr/Y and La/Yb ratios, zircon U-Pb ages and Hf isotopic compositions of the Late Palaeozoic igneous rocks. Our results show that the crust of C-WJOB was much thinner (20–25 km) than normal continental crust (average at 33 km) in the Early Carboniferous, and began to thicken from 350 Ma to 330 Ma at a slow rate. Crustal thickening was caused by the addition of subduction-related magma sourced from depleted-mantle but with contributions of subducted sediments. The crust started to thicken significantly at ~330 Ma and reached to a maximum thickness of ~40 km between 322 Ma and 310 Ma. The timing of maximum thickness corresponded with the emplacement of calc-alkaline to high-K calc-alkaline I-type dioritic magmas as well as adakitic magma. These magmas were generated by melting of both depleted mantle and juvenile lower crust, which was probably triggered by underplated mantle-derived basaltic magma. Lastly, crustal thinning happened between 310 Ma and 295 Ma due to regional post-collisional extension, although voluminous granitic magmatism occurred. The granitic magmas were formed by remelting of the juvenile lower crust, with a few contribution of mantle material. This study on the variation of crustal thickness in the Late Palaeozoic C-WJOB provides insight into how integrated geochemical and isotopic data can elucidate the complex histories of orogenic belts.
科研通智能强力驱动
Strongly Powered by AbleSci AI