Neural Network Model-Based Control for Manipulator: An Autoencoder Perspective

自编码 计算机科学 稳健性(进化) 人工神经网络 人工智能 控制理论(社会学) 控制器(灌溉) 控制工程 机器学习 工程类 控制(管理) 生物化学 化学 生物 农学 基因
作者
Zhan Li,Shuai Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 2854-2868 被引量:10
标识
DOI:10.1109/tnnls.2021.3109953
摘要

Recently, neural network model-based control has received wide interests in kinematics control of manipulators. To enhance learning ability of neural network models, the autoencoder method is used as a powerful tool to achieve deep learning and has gained success in recent years. However, the performance of existing autoencoder approaches for manipulator control may be still largely dependent on the quality of data, and for extreme cases with noisy data it may even fail. How to incorporate the model knowledge into the autoencoder controller design with an aim to increase the robustness and reliability remains a challenging problem. In this work, a sparse autoencoder controller for kinematic control of manipulators with weights obtained directly from the robot model rather than training data is proposed for the first time. By encoding and decoding the control target though a new dynamic recurrent neural network architecture, the control input can be solved through a new sparse optimization formulation. In this work, input saturation, which holds for almost all practical systems but usually is ignored for analysis simplicity, is also considered in the controller construction. Theoretical analysis and extensive simulations demonstrate that the proposed sparse autoencoder controller with input saturation can make the end-effector of the manipulator system track the desired path efficiently. Further performance comparison and evaluation against the additive noise and parameter uncertainty substantiate robustness of the proposed sparse autoencoder manipulator controller.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情心情发布了新的文献求助10
2秒前
老大蒂亚戈应助潇湘雪月采纳,获得10
3秒前
打我呀发布了新的文献求助30
3秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
5秒前
MchemG应助科研通管家采纳,获得10
5秒前
YamDaamCaa应助科研通管家采纳,获得30
5秒前
852应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得30
5秒前
MchemG应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得30
5秒前
情怀应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
MchemG应助科研通管家采纳,获得10
5秒前
5秒前
李爱国应助深情的雁露采纳,获得10
5秒前
6秒前
盘尼西林发布了新的文献求助10
11秒前
幸福大白发布了新的文献求助10
11秒前
希望天下0贩的0应助李李采纳,获得10
12秒前
QQ完成签到,获得积分20
12秒前
12秒前
BiuBiu怪完成签到,获得积分10
14秒前
Dellamoffy完成签到,获得积分10
14秒前
15秒前
cnlt应助会撒娇的采蓝采纳,获得10
15秒前
海藻发布了新的文献求助10
17秒前
18秒前
盘尼西林完成签到,获得积分10
18秒前
yar应助JK采纳,获得10
20秒前
xxddw发布了新的文献求助10
20秒前
21秒前
打我呀完成签到,获得积分10
21秒前
gsj发布了新的文献求助10
24秒前
zzk完成签到 ,获得积分10
24秒前
老大蒂亚戈应助潇湘雪月采纳,获得10
24秒前
李嘉欣完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174