Neural Network Model-Based Control for Manipulator: An Autoencoder Perspective

自编码 计算机科学 稳健性(进化) 人工神经网络 人工智能 控制理论(社会学) 控制器(灌溉) 控制工程 机器学习 工程类 控制(管理) 生物化学 化学 生物 农学 基因
作者
Zhan Li,Shuai Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 2854-2868 被引量:10
标识
DOI:10.1109/tnnls.2021.3109953
摘要

Recently, neural network model-based control has received wide interests in kinematics control of manipulators. To enhance learning ability of neural network models, the autoencoder method is used as a powerful tool to achieve deep learning and has gained success in recent years. However, the performance of existing autoencoder approaches for manipulator control may be still largely dependent on the quality of data, and for extreme cases with noisy data it may even fail. How to incorporate the model knowledge into the autoencoder controller design with an aim to increase the robustness and reliability remains a challenging problem. In this work, a sparse autoencoder controller for kinematic control of manipulators with weights obtained directly from the robot model rather than training data is proposed for the first time. By encoding and decoding the control target though a new dynamic recurrent neural network architecture, the control input can be solved through a new sparse optimization formulation. In this work, input saturation, which holds for almost all practical systems but usually is ignored for analysis simplicity, is also considered in the controller construction. Theoretical analysis and extensive simulations demonstrate that the proposed sparse autoencoder controller with input saturation can make the end-effector of the manipulator system track the desired path efficiently. Further performance comparison and evaluation against the additive noise and parameter uncertainty substantiate robustness of the proposed sparse autoencoder manipulator controller.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6666发布了新的文献求助10
4秒前
无限雨南发布了新的文献求助10
4秒前
EgoElysia完成签到,获得积分10
4秒前
敏感雅香发布了新的文献求助10
5秒前
归尘发布了新的文献求助150
6秒前
zumri发布了新的文献求助10
6秒前
jia完成签到,获得积分10
8秒前
9秒前
9秒前
hino发布了新的文献求助10
9秒前
共享精神应助6666采纳,获得10
11秒前
shower_009完成签到,获得积分10
12秒前
14秒前
在水一方应助哈哈采纳,获得10
15秒前
15秒前
纯真追命完成签到 ,获得积分10
15秒前
15秒前
16秒前
咚咚锵完成签到,获得积分10
16秒前
16秒前
包容的琦发布了新的文献求助30
19秒前
梦里繁花发布了新的文献求助10
19秒前
Wang完成签到,获得积分10
21秒前
weilanhaian完成签到,获得积分10
21秒前
22秒前
蒋雪琴完成签到 ,获得积分10
22秒前
wjw发布了新的文献求助10
23秒前
24秒前
FashionBoy应助聪慧的正豪采纳,获得10
25秒前
25秒前
李长印发布了新的文献求助10
26秒前
26秒前
weilanhaian发布了新的文献求助10
27秒前
28秒前
nannan发布了新的文献求助10
28秒前
健忘小霜发布了新的文献求助10
28秒前
张大英完成签到 ,获得积分20
30秒前
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035