光刺激
脊髓
光遗传学
神经科学
发光二极管
闭环
斑马鱼
生物
材料科学
光电子学
工程类
生物化学
基因
控制工程
作者
Claudia Kathe,Frédéric Michoud,Philipp Schönle,Andreas Rowald,Noé Brun,Jimmy Ravier,Ivan Furfaro,Valentina Paggi,Kyungjin Kim,Sadaf Soloukey,Léonie Asboth,Thomas H. Hutson,Ileana O. Jelescu,Antoine Philippides,Noaf S.A. Alwahab,Jérôme Gandar,Daniel Huber,Chris I. De Zeeuw,Quentin Barraud,Qiuting Huang,Stéphanie P. Lacour,Grégoire Courtine
标识
DOI:10.1038/s41587-021-01019-x
摘要
Optoelectronic systems can exert precise control over targeted neurons and pathways throughout the brain in untethered animals, but similar technologies for the spinal cord are not well established. In the present study, we describe a system for ultrafast, wireless, closed-loop manipulation of targeted neurons and pathways across the entire dorsoventral spinal cord in untethered mice. We developed a soft stretchable carrier, integrating microscale light-emitting diodes (micro-LEDs), that conforms to the dura mater of the spinal cord. A coating of silicone–phosphor matrix over the micro-LEDs provides mechanical protection and light conversion for compatibility with a large library of opsins. A lightweight, head-mounted, wireless platform powers the micro-LEDs and performs low-latency, on-chip processing of sensed physiological signals to control photostimulation in a closed loop. We use the device to reveal the role of various neuronal subtypes, sensory pathways and supraspinal projections in the control of locomotion in healthy and spinal-cord injured mice. Optogenetics is applied to the entire mouse spinal cord.
科研通智能强力驱动
Strongly Powered by AbleSci AI