Deep Multimodal Fusion Network for Semantic Segmentation Using Remote Sensing Image and LiDAR Data

计算机科学 激光雷达 人工智能 遥感 点云 深度学习 传感器融合 计算机视觉 惯性测量装置 模式识别(心理学) 地质学
作者
Yangjie Sun,Zhongliang Fu,Chuanxia Sun,Yinglei Hu,Shengyuan Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:42
标识
DOI:10.1109/tgrs.2021.3108352
摘要

Extracting semantic information from very-high-resolution (VHR) aerial images is a prominent topic in the Earth observation research. An increasing number of different sensor platforms are appearing in remote sensing, each of which can provide corresponding multimodal supplemental or enhanced information, such as optical images, light detection and ranging (LiDAR) point clouds, infrared images, or inertial measurement unit (IMU) data. However, these current deep networks for LiDAR and VHR images have not fully utilized the complete potential of multimodal data. The stacked multimodal fusion network (MFNet) ignores the structural differences between the modalities and the manual statistical characteristics within the modalities. For multimodal remote sensing data and its corresponding carefully designed handcrafted features, we designed a novel deep MFNet that can use multimodal VHR aerial images and LiDAR data and the corresponding intramodal features, such as LiDAR-derived features [slope and normalized digital surface model (NDSM)] and imagery-derived features [infrared–red–green (IRRG), normalized difference vegetation index (NDVI), and difference of Gaussian (DoG)]. Technically, we introduce the attention mechanism and multimodal learning to adaptively fuse intermodal and intramodal features. Specifically, we designed a multimodal fusion mechanism, pyramid dilation blocks, and a multilevel feature fusion module. Through these modules, our network realized the adaptive fusion of multimodal features, improved the receptive field, and enhanced the global-to-local contextual fusion effect. Moreover, we used a multiscale supervision training scheme to optimize the network. Extensive experimental results and ablation studies on the ISPRS semantic dataset and IEEE GRSS DFC Zeebrugge dataset show the effectiveness of our proposed MFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
九千七发布了新的文献求助10
1秒前
故渊完成签到,获得积分10
1秒前
万能图书馆应助过氧化氢采纳,获得20
2秒前
yan完成签到,获得积分10
3秒前
黑黑黑发布了新的文献求助10
3秒前
万能图书馆应助环游水星采纳,获得10
3秒前
阿良完成签到,获得积分10
4秒前
Joe完成签到 ,获得积分10
4秒前
8564523完成签到,获得积分10
5秒前
dandan完成签到,获得积分10
5秒前
单薄的夜南应助Connie采纳,获得10
5秒前
啦啦啦完成签到,获得积分10
5秒前
6秒前
小马过河应助小汤圆采纳,获得10
6秒前
九千七完成签到,获得积分20
6秒前
皮划艇发布了新的文献求助30
6秒前
Firenze完成签到,获得积分20
7秒前
浪浪山第一酷完成签到,获得积分10
7秒前
Dr_R完成签到,获得积分10
7秒前
KDS完成签到,获得积分10
7秒前
8秒前
8秒前
domingo发布了新的文献求助20
9秒前
Cain发布了新的文献求助10
9秒前
小马甲应助车大花采纳,获得10
9秒前
9秒前
wwz发布了新的文献求助30
10秒前
10秒前
666完成签到,获得积分10
10秒前
cheng完成签到,获得积分10
10秒前
yang完成签到,获得积分10
12秒前
能干雁凡发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
keran完成签到,获得积分20
15秒前
哈哈哈应助星河在眼里采纳,获得10
15秒前
quan发布了新的文献求助10
16秒前
zhenzhu完成签到,获得积分10
16秒前
17秒前
ZZR完成签到,获得积分20
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650