Deep Multimodal Fusion Network for Semantic Segmentation Using Remote Sensing Image and LiDAR Data

计算机科学 激光雷达 人工智能 遥感 点云 深度学习 传感器融合 计算机视觉 惯性测量装置 模式识别(心理学) 地质学
作者
Yangjie Sun,Zhongliang Fu,Chuanxia Sun,Yinglei Hu,Shengyuan Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:68
标识
DOI:10.1109/tgrs.2021.3108352
摘要

Extracting semantic information from very-high-resolution (VHR) aerial images is a prominent topic in the Earth observation research. An increasing number of different sensor platforms are appearing in remote sensing, each of which can provide corresponding multimodal supplemental or enhanced information, such as optical images, light detection and ranging (LiDAR) point clouds, infrared images, or inertial measurement unit (IMU) data. However, these current deep networks for LiDAR and VHR images have not fully utilized the complete potential of multimodal data. The stacked multimodal fusion network (MFNet) ignores the structural differences between the modalities and the manual statistical characteristics within the modalities. For multimodal remote sensing data and its corresponding carefully designed handcrafted features, we designed a novel deep MFNet that can use multimodal VHR aerial images and LiDAR data and the corresponding intramodal features, such as LiDAR-derived features [slope and normalized digital surface model (NDSM)] and imagery-derived features [infrared–red–green (IRRG), normalized difference vegetation index (NDVI), and difference of Gaussian (DoG)]. Technically, we introduce the attention mechanism and multimodal learning to adaptively fuse intermodal and intramodal features. Specifically, we designed a multimodal fusion mechanism, pyramid dilation blocks, and a multilevel feature fusion module. Through these modules, our network realized the adaptive fusion of multimodal features, improved the receptive field, and enhanced the global-to-local contextual fusion effect. Moreover, we used a multiscale supervision training scheme to optimize the network. Extensive experimental results and ablation studies on the ISPRS semantic dataset and IEEE GRSS DFC Zeebrugge dataset show the effectiveness of our proposed MFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助听星伴月采纳,获得10
刚刚
穆亦擎完成签到 ,获得积分10
1秒前
youuuu完成签到 ,获得积分10
1秒前
冷静新烟发布了新的文献求助10
1秒前
barwin完成签到,获得积分10
1秒前
saaa完成签到,获得积分10
1秒前
3秒前
羊洋洋完成签到,获得积分20
3秒前
情怀应助Ee采纳,获得10
3秒前
4秒前
4秒前
5秒前
冰糖炬雪梨完成签到,获得积分10
5秒前
黄hhh发布了新的文献求助10
6秒前
buno应助牛马采纳,获得10
6秒前
7秒前
7秒前
嘻嘻发布了新的文献求助10
7秒前
青柠发布了新的文献求助10
8秒前
8秒前
求学发布了新的文献求助10
8秒前
苹果牌牛仔裤完成签到,获得积分10
9秒前
9秒前
太清发布了新的文献求助10
9秒前
传奇3应助CH采纳,获得10
10秒前
我是老大应助Galato采纳,获得10
10秒前
10秒前
11秒前
吞吞发布了新的文献求助10
12秒前
Asteria发布了新的文献求助10
12秒前
Frank应助刘凯采纳,获得10
13秒前
陈陈陈完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助111采纳,获得10
14秒前
shunshun51213完成签到,获得积分10
15秒前
烂漫怀亦发布了新的文献求助10
15秒前
开朗的觅柔完成签到,获得积分10
15秒前
FayFoo发布了新的文献求助80
15秒前
听星伴月发布了新的文献求助10
15秒前
y13333完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572695
求助须知:如何正确求助?哪些是违规求助? 4658592
关于积分的说明 14722423
捐赠科研通 4598545
什么是DOI,文献DOI怎么找? 2523879
邀请新用户注册赠送积分活动 1494533
关于科研通互助平台的介绍 1464586