Molecular subtype classification of breast cancer using established radiomic signature models based on 18F-FDG PET/CT images

正电子发射断层摄影术 接收机工作特性 乳腺癌 标准摄取值 核医学 医学 无线电技术 Lasso(编程语言) 放射科 癌症 计算机科学 内科学 万维网
作者
Jianjing Liu,Haiman Bian,Yubin Zhang,Yuyang Gao,Guotao Yin,Ziyang Wang,Xiaofeng Li,Wenjuan Ma,Wengui Xu
出处
期刊:Frontiers in bioscience [Bioscience Research Institute Pte. Ltd.]
卷期号:26 (9): 475-475 被引量:14
标识
DOI:10.52586/4960
摘要

Backgrounds: To evaluate the predictive power of 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) derived radiomics in molecular subtype classification of breast cancer (BC). Methods: A total of 273 primary BC patients who underwent a 18F-FDG PET/CT imaging prior to any treatment were included in this retrospective study, and the values of five conventional PET parameters were calculated, including the maximum standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). The ImageJ 1.50i software and METLAB package were used to delineate the contour of BC lesions and extract PET/CT derived radiomic features reflecting heterogeneity. Then, the least absolute shrinkage and selection operator (LASSO) algorithm was used to select optimal subsets of radiomic features and establish several corresponding radiomic signature models. The predictive powers of individual PET parameters and developed PET/CT derived radiomic signature models in molecular subtype classification of BC were evaluated by using receiver operating curves (ROCs) analyses with areas under the curve (AUCs) as the main outcomes. Results: All of the three SUV parameters but not MTV nor TLG were found to be significantly underrepresented in luminal and non-triple (TN) subgroups in comparison with corresponding non-luminal and TN subgroups. Whereas, no significant differences existed in all the five conventional PET parameters between human epidermal growth factor receptor 2+ (HER2+) and HER2- subgroups. Furthermore, all of the developed radiomic signature models correspondingly exhibited much more better performances than all the individual PET parameters in molecular subtype classification of BC, including luminal vs. non-luminal, HER2+ vs. HER2-, and TN vs. non-TN classification, with a mean value of 0.856, 0.818, and 0.888 for AUC. Conclusions: PET/CT derived radiomic signature models outperformed individual significant PET parameters in molecular subtype classification of BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liuqing完成签到,获得积分10
刚刚
善学以致用应助xiaoliu采纳,获得10
刚刚
刚刚
czq发布了新的文献求助10
刚刚
Chao完成签到,获得积分10
1秒前
和谐的火龙果应助豌豆采纳,获得10
1秒前
文风杰采完成签到,获得积分10
1秒前
2秒前
sgffdhcv发布了新的文献求助10
2秒前
王明磊发布了新的文献求助10
2秒前
2秒前
whatever应助逆光之翼采纳,获得30
3秒前
Ava应助思思采纳,获得10
4秒前
4秒前
超级映安发布了新的文献求助10
4秒前
4秒前
3242晶发布了新的文献求助10
5秒前
小马甲应助wxy采纳,获得10
6秒前
6秒前
苏子轩完成签到 ,获得积分10
6秒前
史道夫完成签到,获得积分10
6秒前
猪猪玉完成签到 ,获得积分10
7秒前
容荣发布了新的文献求助10
7秒前
大意的绿蓉完成签到,获得积分10
7秒前
CIXI完成签到,获得积分10
7秒前
愉快的老三完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
领导范儿应助司徒无剑采纳,获得10
9秒前
9秒前
9秒前
Summer夏天完成签到,获得积分10
9秒前
orixero应助缓慢钢笔采纳,获得10
10秒前
盒子应助sunrase采纳,获得10
10秒前
10秒前
今后应助科研小菜鸡采纳,获得10
10秒前
hu发布了新的文献求助10
10秒前
11秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134618
求助须知:如何正确求助?哪些是违规求助? 2785501
关于积分的说明 7772725
捐赠科研通 2441172
什么是DOI,文献DOI怎么找? 1297862
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600813