Molecular subtype classification of breast cancer using established radiomic signature models based on 18F-FDG PET/CT images

正电子发射断层摄影术 接收机工作特性 乳腺癌 标准摄取值 核医学 医学 无线电技术 Lasso(编程语言) 放射科 癌症 计算机科学 内科学 万维网
作者
Jianjing Liu,Haiman Bian,Yubin Zhang,Yuyang Gao,Guotao Yin,Ziyang Wang,Xiaofeng Li,Wenjuan Ma,Wengui Xu
出处
期刊:Frontiers in bioscience [Bioscience Research Institute Pte. Ltd.]
卷期号:26 (9): 475-475 被引量:14
标识
DOI:10.52586/4960
摘要

Backgrounds: To evaluate the predictive power of 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) derived radiomics in molecular subtype classification of breast cancer (BC). Methods: A total of 273 primary BC patients who underwent a 18F-FDG PET/CT imaging prior to any treatment were included in this retrospective study, and the values of five conventional PET parameters were calculated, including the maximum standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). The ImageJ 1.50i software and METLAB package were used to delineate the contour of BC lesions and extract PET/CT derived radiomic features reflecting heterogeneity. Then, the least absolute shrinkage and selection operator (LASSO) algorithm was used to select optimal subsets of radiomic features and establish several corresponding radiomic signature models. The predictive powers of individual PET parameters and developed PET/CT derived radiomic signature models in molecular subtype classification of BC were evaluated by using receiver operating curves (ROCs) analyses with areas under the curve (AUCs) as the main outcomes. Results: All of the three SUV parameters but not MTV nor TLG were found to be significantly underrepresented in luminal and non-triple (TN) subgroups in comparison with corresponding non-luminal and TN subgroups. Whereas, no significant differences existed in all the five conventional PET parameters between human epidermal growth factor receptor 2+ (HER2+) and HER2- subgroups. Furthermore, all of the developed radiomic signature models correspondingly exhibited much more better performances than all the individual PET parameters in molecular subtype classification of BC, including luminal vs. non-luminal, HER2+ vs. HER2-, and TN vs. non-TN classification, with a mean value of 0.856, 0.818, and 0.888 for AUC. Conclusions: PET/CT derived radiomic signature models outperformed individual significant PET parameters in molecular subtype classification of BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qi完成签到,获得积分10
1秒前
哒哒发布了新的文献求助10
1秒前
知行完成签到,获得积分10
1秒前
1秒前
2秒前
Yenom发布了新的文献求助10
2秒前
3秒前
滴滴发布了新的文献求助10
4秒前
心灵美发卡完成签到,获得积分10
4秒前
科目三应助浩浩大人采纳,获得10
5秒前
考虑考虑完成签到,获得积分10
5秒前
彪壮的刺猬完成签到,获得积分10
6秒前
杏花饼完成签到,获得积分10
6秒前
Ll发布了新的文献求助10
6秒前
6秒前
汉堡包应助啊娴仔采纳,获得10
7秒前
7秒前
珂伟完成签到,获得积分10
7秒前
鲜艳的帅哥完成签到,获得积分10
8秒前
wkjsdsg完成签到,获得积分10
8秒前
大七完成签到 ,获得积分10
8秒前
8秒前
jogrgr发布了新的文献求助10
9秒前
lll发布了新的文献求助10
10秒前
生气的鸡蛋完成签到,获得积分10
10秒前
qi发布了新的文献求助10
10秒前
zino发布了新的文献求助10
11秒前
11秒前
11秒前
stt发布了新的文献求助10
12秒前
小蘑菇应助杏花饼采纳,获得10
12秒前
海棠yiyi发布了新的文献求助50
12秒前
camellia完成签到 ,获得积分10
13秒前
13秒前
13秒前
田様应助柠木采纳,获得10
13秒前
13秒前
研友_VZG7GZ应助生气的鸡蛋采纳,获得10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759