Molecular subtype classification of breast cancer using established radiomic signature models based on 18F-FDG PET/CT images

正电子发射断层摄影术 接收机工作特性 乳腺癌 标准摄取值 核医学 医学 无线电技术 Lasso(编程语言) 放射科 癌症 计算机科学 内科学 万维网
作者
Jianjing Liu,Haiman Bian,Yubin Zhang,Yuyang Gao,Guotao Yin,Ziyang Wang,Xiaofeng Li,Wenjuan Ma,Wengui Xu
出处
期刊:Frontiers in bioscience [IMR Press]
卷期号:26 (9): 475-475 被引量:14
标识
DOI:10.52586/4960
摘要

Backgrounds: To evaluate the predictive power of 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) derived radiomics in molecular subtype classification of breast cancer (BC). Methods: A total of 273 primary BC patients who underwent a 18F-FDG PET/CT imaging prior to any treatment were included in this retrospective study, and the values of five conventional PET parameters were calculated, including the maximum standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). The ImageJ 1.50i software and METLAB package were used to delineate the contour of BC lesions and extract PET/CT derived radiomic features reflecting heterogeneity. Then, the least absolute shrinkage and selection operator (LASSO) algorithm was used to select optimal subsets of radiomic features and establish several corresponding radiomic signature models. The predictive powers of individual PET parameters and developed PET/CT derived radiomic signature models in molecular subtype classification of BC were evaluated by using receiver operating curves (ROCs) analyses with areas under the curve (AUCs) as the main outcomes. Results: All of the three SUV parameters but not MTV nor TLG were found to be significantly underrepresented in luminal and non-triple (TN) subgroups in comparison with corresponding non-luminal and TN subgroups. Whereas, no significant differences existed in all the five conventional PET parameters between human epidermal growth factor receptor 2+ (HER2+) and HER2- subgroups. Furthermore, all of the developed radiomic signature models correspondingly exhibited much more better performances than all the individual PET parameters in molecular subtype classification of BC, including luminal vs. non-luminal, HER2+ vs. HER2-, and TN vs. non-TN classification, with a mean value of 0.856, 0.818, and 0.888 for AUC. Conclusions: PET/CT derived radiomic signature models outperformed individual significant PET parameters in molecular subtype classification of BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LaLaC完成签到,获得积分10
刚刚
derrrrrsin完成签到,获得积分10
刚刚
刚刚
anubisi发布了新的文献求助10
刚刚
1秒前
润润完成签到 ,获得积分10
1秒前
安静的飞薇完成签到,获得积分10
1秒前
坦率的嫣娆完成签到,获得积分20
1秒前
Lxx完成签到,获得积分10
2秒前
彭于晏应助阿森采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
九九完成签到,获得积分10
4秒前
ZZ发布了新的文献求助10
4秒前
yyy发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
皮皮灰熊完成签到,获得积分10
5秒前
无聊的依瑶完成签到,获得积分10
6秒前
完美世界应助black采纳,获得10
6秒前
weiwei发布了新的文献求助10
6秒前
李牧发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
8秒前
阿乾发布了新的文献求助10
9秒前
小白发布了新的文献求助10
9秒前
solitary1124完成签到,获得积分10
9秒前
秦可可发布了新的文献求助30
9秒前
你的左轮呢完成签到,获得积分10
9秒前
山花花完成签到,获得积分10
10秒前
10秒前
WQ发布了新的文献求助10
11秒前
文若369发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917