金属间化合物
材料科学
催化作用
纳米晶
退火(玻璃)
金属
电化学
化学工程
纳米颗粒
纳米技术
冶金
物理化学
电极
化学
合金
有机化学
工程类
作者
Xing Li,Yanghua He,Shaobo Cheng,Boyang Li,Yachao Zeng,Zhenhua Xie,Qingping Meng,Lu Ma,Kim Kisslinger,Xiao Tong,Sooyeon Hwang,Siyu Yao,Chenzhao Li,Zhi Qiao,Chongxin Shan,Yimei Zhu,Jian Xie,Guofeng Wang,Gang Wu,Dong Su
标识
DOI:10.1002/adma.202106371
摘要
Abstract Due to their exceptional catalytic properties for the oxygen reduction reaction (ORR) and other crucial electrochemical reactions, PtCo intermetallic nanoparticle (NP) and single atomic (SA) Pt metal site catalysts have received considerable attention. However, their formation mechanisms at the atomic level during high‐temperature annealing processes remain elusive. Here, the thermally driven structure evolution of Pt–Co binary catalyst systems is investigated using advanced in situ electron microscopy, including PtCo intermetallic alloys and single Pt/Co metal sites. The pre‐doping of CoN 4 sites in carbon supports and the initial Pt NP sizes play essential roles in forming either Pt 3 Co intermetallics or single Pt/Co metal sites. Importantly, the initial Pt NP loadings against the carbon support are critical to whether alloying to L1 2 ‐ordered Pt 3 Co NPs or atomizing to SA Pt sites at high temperatures. High Pt NP loadings (e.g., 20%) tend to lead to the formation of highly ordered Pt 3 Co intermetallic NPs with excellent activity and enhanced stability toward the ORR. In contrast, at a relatively low Pt loading ( < 6 wt%), the formation of single Pt sites in the form of PtC 3 N is thermodynamically favorable, in which a synergy between the PtC 3 N and the CoN 4 sites could enhance the catalytic activity for the ORR, but showing insufficient stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI