亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features

人工智能 卷积神经网络 深度学习 接收机工作特性 计算机辅助诊断 计算机科学 模式识别(心理学) 特征选择 人工神经网络 机器学习
作者
Xianfang Hu,Jing Gong,Wei Zhou,Haiming Li,Shengping Wang,Wei Meng,Weijun Peng,Yajia Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (6): 065015-065015 被引量:39
标识
DOI:10.1088/1361-6560/abe735
摘要

This study aims to develop a computer-aided diagnosis (CADx) scheme to classify between benign and malignant ground glass nodules (GGNs), and fuse deep leaning and radiomics imaging features to improve the classification performance.We first retrospectively collected 513 surgery histopathology confirmed GGNs from two centers. Among these GGNs, 100 were benign and 413 were malignant. All malignant tumors were stage I lung adenocarcinoma. To segment GGNs, we applied a deep convolutional neural network and residual architecture to train and build a 3D U-Net. Then, based on the pre-trained U-Net, we used a transfer learning approach to build a deep neural network (DNN) to classify between benign and malignant GGNs. With the GGN segmentation results generated by 3D U-Net, we also developed a CT radiomics model by adopting a series of image processing techniques, i.e. radiomics feature extraction, feature selection, synthetic minority over-sampling technique, and support vector machine classifier training/testing, etc. Finally, we applied an information fusion method to fuse the prediction scores generated by DNN based CADx model and CT-radiomics based model. To evaluate the proposed model performance, we conducted a comparison experiment by testing on an independent testing dataset.Comparing with DNN model and radiomics model, our fusion model yielded a significant higher area under a receiver operating characteristic curve (AUC) value of 0.73 ± 0.06 (P < 0.01). The fusion model generated an accuracy of 75.6%, F1 score of 84.6%, weighted average F1 score of 70.3%, and Matthews correlation coefficient of 43.6%, which were higher than the DNN model and radiomics model individually.Our experimental results demonstrated that (1) applying a CADx scheme was feasible to diagnosis of early-stage lung adenocarcinoma, (2) deep image features and radiomics features provided complementary information in classifying benign and malignant GGNs, and (3) it was an effective way to build DNN model with limited dataset by using transfer learning. Thus, to build a robust image analysis based CADx model, one can combine different types of image features to decode the imaging phenotypes of GGN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
车访枫发布了新的文献求助10
22秒前
樱桃猴子应助小张采纳,获得10
35秒前
华仔应助车访枫采纳,获得10
54秒前
1分钟前
gt完成签到 ,获得积分10
1分钟前
车访枫发布了新的文献求助10
1分钟前
车访枫发布了新的文献求助10
1分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助淡定的弘采纳,获得10
2分钟前
2分钟前
古月发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大模型应助刘老板采纳,获得10
2分钟前
车访枫发布了新的文献求助10
2分钟前
SolderOH完成签到,获得积分10
2分钟前
有魅力的千萍关注了科研通微信公众号
2分钟前
2分钟前
刘老板发布了新的文献求助10
2分钟前
Owen应助车访枫采纳,获得10
3分钟前
3分钟前
领导范儿应助李小猫采纳,获得10
3分钟前
3分钟前
李小猫完成签到,获得积分10
3分钟前
李小猫发布了新的文献求助10
3分钟前
4分钟前
占稚晴完成签到 ,获得积分10
4分钟前
尔尔发布了新的文献求助10
4分钟前
Jasper应助pxdy采纳,获得10
5分钟前
诉与山风听完成签到,获得积分10
5分钟前
5分钟前
pxdy发布了新的文献求助10
5分钟前
哇咔咔完成签到 ,获得积分10
5分钟前
ch发布了新的文献求助10
5分钟前
爆米花应助科研通管家采纳,获得10
6分钟前
吃的饱饱呀完成签到 ,获得积分10
6分钟前
Notorious完成签到,获得积分10
6分钟前
8分钟前
车访枫发布了新的文献求助10
8分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223924
求助须知:如何正确求助?哪些是违规求助? 2872328
关于积分的说明 8179473
捐赠科研通 2539181
什么是DOI,文献DOI怎么找? 1371240
科研通“疑难数据库(出版商)”最低求助积分说明 646021
邀请新用户注册赠送积分活动 620012