Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features

人工智能 卷积神经网络 深度学习 接收机工作特性 计算机辅助诊断 计算机科学 模式识别(心理学) 特征选择 人工神经网络 机器学习
作者
Xianfang Hu,Jing Gong,Wei Zhou,Haiming Li,Shengping Wang,Wei Meng,Weijun Peng,Yajia Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (6): 065015-065015 被引量:42
标识
DOI:10.1088/1361-6560/abe735
摘要

This study aims to develop a computer-aided diagnosis (CADx) scheme to classify between benign and malignant ground glass nodules (GGNs), and fuse deep leaning and radiomics imaging features to improve the classification performance.We first retrospectively collected 513 surgery histopathology confirmed GGNs from two centers. Among these GGNs, 100 were benign and 413 were malignant. All malignant tumors were stage I lung adenocarcinoma. To segment GGNs, we applied a deep convolutional neural network and residual architecture to train and build a 3D U-Net. Then, based on the pre-trained U-Net, we used a transfer learning approach to build a deep neural network (DNN) to classify between benign and malignant GGNs. With the GGN segmentation results generated by 3D U-Net, we also developed a CT radiomics model by adopting a series of image processing techniques, i.e. radiomics feature extraction, feature selection, synthetic minority over-sampling technique, and support vector machine classifier training/testing, etc. Finally, we applied an information fusion method to fuse the prediction scores generated by DNN based CADx model and CT-radiomics based model. To evaluate the proposed model performance, we conducted a comparison experiment by testing on an independent testing dataset.Comparing with DNN model and radiomics model, our fusion model yielded a significant higher area under a receiver operating characteristic curve (AUC) value of 0.73 ± 0.06 (P < 0.01). The fusion model generated an accuracy of 75.6%, F1 score of 84.6%, weighted average F1 score of 70.3%, and Matthews correlation coefficient of 43.6%, which were higher than the DNN model and radiomics model individually.Our experimental results demonstrated that (1) applying a CADx scheme was feasible to diagnosis of early-stage lung adenocarcinoma, (2) deep image features and radiomics features provided complementary information in classifying benign and malignant GGNs, and (3) it was an effective way to build DNN model with limited dataset by using transfer learning. Thus, to build a robust image analysis based CADx model, one can combine different types of image features to decode the imaging phenotypes of GGN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding完成签到,获得积分10
刚刚
supermark123完成签到,获得积分10
刚刚
DongWei95完成签到,获得积分10
刚刚
刚刚
123应助weddcf采纳,获得20
1秒前
2秒前
2秒前
meier1206完成签到,获得积分10
3秒前
最爱吃火锅完成签到,获得积分10
5秒前
希望天下0贩的0应助雨落采纳,获得10
6秒前
俭朴青烟发布了新的文献求助10
6秒前
五花肉发布了新的文献求助10
7秒前
室内设计发布了新的文献求助10
8秒前
Liufgui应助禅花游鱼采纳,获得10
10秒前
Ava应助小巧的怜蕾采纳,获得10
11秒前
领导范儿应助小米粒采纳,获得10
12秒前
13秒前
今后应助科研通管家采纳,获得10
13秒前
生动路人应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
14秒前
dong应助科研通管家采纳,获得10
14秒前
zzzzzzzz应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
dong应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
ding应助科研通管家采纳,获得10
14秒前
14秒前
劼大大完成签到,获得积分10
15秒前
李健应助五花肉采纳,获得10
15秒前
FFSGF发布了新的文献求助10
17秒前
郭睿发布了新的文献求助10
17秒前
顾矜应助紧张的世德采纳,获得10
20秒前
21秒前
科目三应助wfy采纳,获得10
21秒前
踩点行动完成签到,获得积分10
22秒前
丘比特应助FFSGF采纳,获得10
22秒前
叫啥好呢应助吴伊玟采纳,获得10
23秒前
上官若男应助呆萌忆山采纳,获得10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010435
求助须知:如何正确求助?哪些是违规求助? 3550258
关于积分的说明 11305330
捐赠科研通 3284688
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811470