DWIE: An entity-centric dataset for multi-task document-level information extraction

共指 计算机科学 信息抽取 自然语言处理 图形 人工智能 情报检索 任务(项目管理) 基本事实 公制(单位) 注释 分辨率(逻辑) 理论计算机科学 运营管理 经济 管理
作者
Klim Zaporojets,Johannes Deleu,Chris Develder,Thomas Demeester
出处
期刊:Information Processing and Management [Elsevier]
卷期号:58 (4): 102563-102563 被引量:22
标识
DOI:10.1016/j.ipm.2021.102563
摘要

This paper presents DWIE, the ‘Deutsche Welle corpus for Information Extraction’, a newly created multi-task dataset that combines four main Information Extraction (IE) annotation subtasks: (i) Named Entity Recognition (NER), (ii) Coreference Resolution, (iii) Relation Extraction (RE), and (iv) Entity Linking. DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start from the detection and classification of named entity mentions in individual sentences. Further, DWIE presented two main challenges when building and evaluating IE models for it. First, the use of traditional mention-level evaluation metrics for NER and RE tasks on entity-centric DWIE dataset can result in measurements dominated by predictions on more frequently mentioned entities. We tackle this issue by proposing a new entity-driven metric that takes into account the number of mentions that compose each of the predicted and ground truth entities. Second, the document-level multi-task annotations require the models to transfer information between entity mentions located in different parts of the document, as well as between different tasks, in a joint learning setting. To realize this, we propose to use graph-based neural message passing techniques between document-level mention spans. Our experiments show an improvement of up to 5.5 F1 percentage points when incorporating neural graph propagation into our joint model. This demonstrates DWIE’s potential to stimulate further research in graph neural networks for representation learning in multi-task IE. We make DWIE publicly available at https://github.com/klimzaporojets/DWIE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝色海发布了新的文献求助10
1秒前
英姑应助蓝荆采纳,获得10
2秒前
huanglu完成签到,获得积分10
2秒前
mb发布了新的文献求助10
2秒前
xiaomu发布了新的文献求助10
2秒前
顺心的舞蹈完成签到,获得积分10
3秒前
愤怒的数据线完成签到,获得积分10
3秒前
5秒前
7秒前
7秒前
李健的小迷弟应助谢雨馨采纳,获得10
8秒前
10秒前
jun发布了新的文献求助10
10秒前
Cupid完成签到,获得积分10
10秒前
10秒前
大模型应助建设采纳,获得10
11秒前
科研通AI5应助陌路采纳,获得10
12秒前
卡卡完成签到,获得积分20
12秒前
平常的玲完成签到,获得积分20
12秒前
香蕉觅云应助棖0921采纳,获得10
12秒前
13秒前
大个应助噜啦噜啦嘞采纳,获得10
13秒前
鲤了么发布了新的文献求助200
13秒前
15秒前
韩小寒qqq发布了新的文献求助10
15秒前
不懈奋进应助swordlee采纳,获得30
15秒前
Ava应助lvsehx采纳,获得10
17秒前
英俊的以莲完成签到,获得积分20
17秒前
哈哈发布了新的文献求助10
17秒前
彭于彦祖应助huanglu采纳,获得50
18秒前
大模型应助小红采纳,获得10
18秒前
18秒前
19秒前
领导范儿应助Zachary采纳,获得10
19秒前
小马甲应助木灵采纳,获得10
19秒前
研友_VZG7GZ应助平常的玲采纳,获得10
20秒前
彩色忆雪发布了新的文献求助30
21秒前
21秒前
谢雨馨发布了新的文献求助10
22秒前
万能图书馆应助韩小寒qqq采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Structural Load Modelling and Combination for Performance and Safety Evaluation 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554770
求助须知:如何正确求助?哪些是违规求助? 3130605
关于积分的说明 9387790
捐赠科研通 2830007
什么是DOI,文献DOI怎么找? 1555773
邀请新用户注册赠送积分活动 726309
科研通“疑难数据库(出版商)”最低求助积分说明 715561