Real-time defect identification of narrow overlap welds and application based on convolutional neural networks

卷积神经网络 人工智能 焊接 涡流 鉴定(生物学) 计算机科学 卷积(计算机科学) 小波 涡流检测 模式识别(心理学) 计算机视觉 人工神经网络 工程类 机械工程 植物 生物 电气工程
作者
Rui Miao,Zhangtuo Shan,Qixing Zhou,Yizhou Wu,Liang Ge,Jie Zhang,Hao Hu
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:62: 800-810 被引量:53
标识
DOI:10.1016/j.jmsy.2021.01.012
摘要

To improve the quality of narrow overlap welds and reduce cost during the high-strength production, it is essential to detect weld defects promptly by identification of the type of defects to provide solution accordingly. This paper proposes an integrated weld defect identification approach combing eddy current detection with 3D laser scanning based on Convolutional Neural Networks (CNN). The detection principle and equipment of the two detection methods are introduced. To fit the training process of CNN, two set of detection signals are preprocessed: a two-dimensional time-frequency diagram for eddy current signals using continuous wavelet transform and for laser images, weld edges are extracted and divided by region using image convolution and combining with integral graph. CNN model VGG16 is trained afterwards with data collected from one local manufacturer in Shanghai. It is discovered that performance of eddy current and laser image identification on different types of weld defects is different, and the accuracy can be increased with the two methods combined. Last, to achieve real-time detection of narrow overlap welding, a two-stage defect recognition model is built which greatly improves the efficiency of weld defect identification without affecting the accuracy of weld defect identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lifengxia发布了新的文献求助10
刚刚
默默的芙完成签到,获得积分10
1秒前
小狗熊吖i发布了新的文献求助10
1秒前
2秒前
飞羽完成签到,获得积分10
2秒前
ZGZ123完成签到,获得积分10
3秒前
无心的怜烟完成签到,获得积分10
3秒前
3秒前
lorentzh发布了新的文献求助10
3秒前
3秒前
嬛嬛发布了新的文献求助10
3秒前
Rainbow发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
smottom应助Yolo采纳,获得10
8秒前
8秒前
狗大王发布了新的文献求助10
9秒前
XYJ发布了新的文献求助10
9秒前
10秒前
希望天下0贩的0应助嬛嬛采纳,获得10
10秒前
星海进完成签到,获得积分10
11秒前
12秒前
情怀应助安静雅阳采纳,获得10
13秒前
13秒前
14秒前
shinysparrow应助淡淡从安采纳,获得100
14秒前
Augenstern完成签到,获得积分20
15秒前
16秒前
充电宝应助MingqingFang采纳,获得10
16秒前
喏晨发布了新的文献求助10
17秒前
17秒前
拉长的初蓝完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
Augenstern发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
wanci应助苗条的小肥羊采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3515939
关于积分的说明 11180280
捐赠科研通 3251061
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805209