Real-time defect identification of narrow overlap welds and application based on convolutional neural networks

卷积神经网络 人工智能 焊接 涡流 鉴定(生物学) 计算机科学 卷积(计算机科学) 小波 涡流检测 模式识别(心理学) 计算机视觉 人工神经网络 工程类 机械工程 植物 生物 电气工程
作者
Rui Miao,Zhangtuo Shan,Qixing Zhou,Yizhou Wu,Liang Ge,Jie Zhang,Hao Hu
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:62: 800-810 被引量:53
标识
DOI:10.1016/j.jmsy.2021.01.012
摘要

To improve the quality of narrow overlap welds and reduce cost during the high-strength production, it is essential to detect weld defects promptly by identification of the type of defects to provide solution accordingly. This paper proposes an integrated weld defect identification approach combing eddy current detection with 3D laser scanning based on Convolutional Neural Networks (CNN). The detection principle and equipment of the two detection methods are introduced. To fit the training process of CNN, two set of detection signals are preprocessed: a two-dimensional time-frequency diagram for eddy current signals using continuous wavelet transform and for laser images, weld edges are extracted and divided by region using image convolution and combining with integral graph. CNN model VGG16 is trained afterwards with data collected from one local manufacturer in Shanghai. It is discovered that performance of eddy current and laser image identification on different types of weld defects is different, and the accuracy can be increased with the two methods combined. Last, to achieve real-time detection of narrow overlap welding, a two-stage defect recognition model is built which greatly improves the efficiency of weld defect identification without affecting the accuracy of weld defect identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晞尘完成签到,获得积分10
刚刚
精明凌旋完成签到,获得积分10
1秒前
1秒前
天天快乐应助LMDD采纳,获得10
2秒前
zhou完成签到,获得积分10
3秒前
lh发布了新的文献求助10
4秒前
lzq发布了新的文献求助30
5秒前
wzy5508完成签到 ,获得积分10
6秒前
7秒前
9秒前
lh完成签到,获得积分10
10秒前
10秒前
友好博发布了新的文献求助30
11秒前
852应助shawn采纳,获得10
12秒前
无花果应助辛勤的果粒多采纳,获得10
12秒前
JMZ发布了新的文献求助10
14秒前
14秒前
YG完成签到 ,获得积分10
18秒前
DAYTOY完成签到,获得积分10
18秒前
19秒前
19秒前
刚刚好完成签到,获得积分10
20秒前
20秒前
点点完成签到,获得积分10
21秒前
苏卿应助火龙果采纳,获得30
21秒前
友好博完成签到,获得积分10
21秒前
21秒前
24秒前
方枪枪发布了新的文献求助10
24秒前
NexusExplorer应助DD采纳,获得10
24秒前
25秒前
康康XY发布了新的文献求助10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
pluto应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
26秒前
Owen应助科研通管家采纳,获得10
26秒前
烟花应助科研通管家采纳,获得10
26秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
30秒前
dongxuzhen完成签到,获得积分10
32秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473050
求助须知:如何正确求助?哪些是违规求助? 3065819
关于积分的说明 9095609
捐赠科研通 2756700
什么是DOI,文献DOI怎么找? 1512525
邀请新用户注册赠送积分活动 699005
科研通“疑难数据库(出版商)”最低求助积分说明 698752