Real-time defect identification of narrow overlap welds and application based on convolutional neural networks

卷积神经网络 人工智能 焊接 涡流 鉴定(生物学) 计算机科学 卷积(计算机科学) 小波 涡流检测 模式识别(心理学) 计算机视觉 人工神经网络 工程类 机械工程 植物 生物 电气工程
作者
Rui Miao,Zhangtuo Shan,Qixing Zhou,Yizhou Wu,Liang Ge,Jie Zhang,Hao Hu
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:62: 800-810 被引量:53
标识
DOI:10.1016/j.jmsy.2021.01.012
摘要

To improve the quality of narrow overlap welds and reduce cost during the high-strength production, it is essential to detect weld defects promptly by identification of the type of defects to provide solution accordingly. This paper proposes an integrated weld defect identification approach combing eddy current detection with 3D laser scanning based on Convolutional Neural Networks (CNN). The detection principle and equipment of the two detection methods are introduced. To fit the training process of CNN, two set of detection signals are preprocessed: a two-dimensional time-frequency diagram for eddy current signals using continuous wavelet transform and for laser images, weld edges are extracted and divided by region using image convolution and combining with integral graph. CNN model VGG16 is trained afterwards with data collected from one local manufacturer in Shanghai. It is discovered that performance of eddy current and laser image identification on different types of weld defects is different, and the accuracy can be increased with the two methods combined. Last, to achieve real-time detection of narrow overlap welding, a two-stage defect recognition model is built which greatly improves the efficiency of weld defect identification without affecting the accuracy of weld defect identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火狐狸kc完成签到,获得积分10
刚刚
小丁发布了新的文献求助10
刚刚
SWL完成签到,获得积分10
刚刚
小蘑菇应助一只猫猫头采纳,获得20
1秒前
1秒前
猹尔斯发布了新的文献求助10
1秒前
xxxx完成签到,获得积分10
1秒前
桐桐应助Chem采纳,获得10
1秒前
酷波er应助小香草采纳,获得20
1秒前
Logan发布了新的文献求助10
2秒前
yizhiyeqiu发布了新的文献求助10
2秒前
2秒前
77777发布了新的文献求助10
2秒前
FashionBoy应助wu采纳,获得10
3秒前
3秒前
an完成签到,获得积分10
4秒前
许子健发布了新的文献求助10
4秒前
大个应助小豆采纳,获得10
4秒前
可靠觅珍完成签到,获得积分10
5秒前
5秒前
FashionBoy应助PaoPao采纳,获得10
6秒前
Cc发布了新的文献求助10
6秒前
自然怀寒完成签到,获得积分10
6秒前
SWL发布了新的文献求助20
7秒前
天真白天完成签到,获得积分10
7秒前
一年5篇发布了新的文献求助10
7秒前
小帆同学应助zsy采纳,获得10
8秒前
GaoYuanLong发布了新的文献求助50
8秒前
9秒前
yizhiyeqiu完成签到,获得积分10
9秒前
SY完成签到,获得积分10
10秒前
10秒前
汉堡包应助wuhuhu采纳,获得10
10秒前
魏不不发布了新的文献求助10
10秒前
10秒前
10秒前
HHHSean完成签到,获得积分10
11秒前
11秒前
11秒前
STDRM发布了新的文献求助10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646