亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract PO-084: Automated detection of pancreatic ductal adenocarcinoma (PDAC) on CT scans using artificial intelligence (AI): Impact of inclusion of automated pancreas segmentation on the accuracy of 3D-convolutional neural network (CNN)

阶段(地层学) 胰腺 医学 胰腺癌 卷积神经网络 分割 最小边界框 放射科 人工智能 计算机科学 癌症 内科学 图像(数学) 生物 古生物学
作者
Anurima Patra,Korfiatis Panagiotis,Garima Suman,Ananya Panda,Sushil Kumar Garg,Ajit H. Goenka
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:27 (5_Supplement): PO-084 被引量:1
标识
DOI:10.1158/1557-3265.adi21-po-084
摘要

Abstract Purpose: Around 30% of PDAC less than 2-cm tend to go undetected on CT due to their subtle imaging signatures. Automated detection of PDAC using AI represents an opportunity to augment physician expertise and to improve outcomes through early detection of PDAC. Our purpose was to develop a 3D-CNN for fully automated detection of PDAC and to further evaluate the impact of inclusion of pancreas segmentation on the accuracy of this 3D-CNN. Methods: A Medical Imaging Data Readiness Scale (MIDaR) level A dataset (portal venous phase CTs, slice thickness ≤ 3.75 mm) of 466 treatment-naïve biopsy-proven PDAC and 1994 subjects with normal pancreas was created after exclusion of CTs with suboptimal image quality or biliary stents. Volumetric pancreas and tumor segmentations on CTs were done by two radiologists using 3D Slicer. A total of 370 CTs with PDAC and 370 CTs with normal pancreas were randomly selected for separate training and validation sets, and 396 CTs (96 CTs with PDAC and 300 CTs with normal pancreas) were utilized for testing. Two separate 3D-CNNs were trained. A three-stage bounding-box-only model (A): stage 1 was based on a UNET-like architecture and localized the pancreas on CT with a bounding box; stage 2 utilized an Inception ResNet architecture and classified each slice through the pancreas into PDAC vs. normal; and stage 3 utilized the output of stage 2 to generate final classification for a given CT. Conversely, a four-stage pancreas segmentation-based model (B) included stage 1 of model A followed by an additional stage of automated pancreas and tumor segmentation (stage 2), classification of each slice through the pancreas into PDAC vs. normal (stage 3) and, finally, generation of final classification score (stage 4) for a given CT. Area under the receiver operating characteristic curve (AUROC) of the two models were compared on the test set. Results: Mean (SD) PDAC diameter in the test set was 1.1 (0.43) cm. Model A (three-stage bounding-box-only) correctly classified 305 (77%) out of 396 CTs from the test set into PDAC vs. normal. It incorrectly classified 12/96 (12.5%) CTs with PDAC as normal and 79/300 (26%) normal CTs as PDAC. AUROC for model A was 0.85. Model B (four-stage pancreas segmentation-based) correctly classified 351 (88%) out of 396 CTs. It incorrectly classified 13/96 (13.5%) CTs with PDAC as normal and 32/300 (10.7%) normal CTs as PDAC. AUROC for model B was 0.94. AUROC for model B was significantly higher than model A (p<0.005). Conclusion: A 3D-CNN can detect small PDAC with high accuracy using automated localization of pancreas with a bounding box without relying on separate pancreas segmentation. Inclusion of an additional automated pancreas segmentation step reduced false positives with consequent incremental gain in the model’s accuracy. Prospective validation and subsequent integration of such models into clinical workflows has the potential to reduce inadvertent errors in detection of subtle or small PDAC on standard-of-care CT scans. Citation Format: Anurima Patra, Korfiatis Panagiotis, Garima Suman, Ananya Panda, Sushil Kumar Garg, Ajit Goenka. Automated detection of pancreatic ductal adenocarcinoma (PDAC) on CT scans using artificial intelligence (AI): Impact of inclusion of automated pancreas segmentation on the accuracy of 3D-convolutional neural network (CNN) [abstract]. In: Proceedings of the AACR Virtual Special Conference on Artificial Intelligence, Diagnosis, and Imaging; 2021 Jan 13-14. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(5_Suppl):Abstract nr PO-084.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
量子星尘发布了新的文献求助10
12秒前
34秒前
38秒前
Dandelion完成签到,获得积分10
46秒前
1分钟前
完美世界应助nsc采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
所所应助nsc采纳,获得10
1分钟前
小蘑菇应助nsc采纳,获得50
1分钟前
Ava应助nsc采纳,获得10
1分钟前
隐形曼青应助nsc采纳,获得10
1分钟前
慕青应助nsc采纳,获得10
1分钟前
脑洞疼应助nsc采纳,获得10
1分钟前
善学以致用应助nsc采纳,获得10
1分钟前
ding应助nsc采纳,获得30
1分钟前
Hello应助nsc采纳,获得10
1分钟前
烟花应助nsc采纳,获得10
1分钟前
1分钟前
1分钟前
漫步随心完成签到,获得积分20
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
2分钟前
今后应助nsc采纳,获得10
2分钟前
bkagyin应助nsc采纳,获得10
2分钟前
小二郎应助nsc采纳,获得10
2分钟前
Jasper应助nsc采纳,获得10
2分钟前
李爱国应助nsc采纳,获得10
2分钟前
脑洞疼应助nsc采纳,获得10
2分钟前
慕青应助nsc采纳,获得10
2分钟前
天天快乐应助nsc采纳,获得10
2分钟前
Akim应助nsc采纳,获得10
2分钟前
充电宝应助nsc采纳,获得10
2分钟前
量子星尘发布了新的文献求助30
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234121
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264