Abstract PO-084: Automated detection of pancreatic ductal adenocarcinoma (PDAC) on CT scans using artificial intelligence (AI): Impact of inclusion of automated pancreas segmentation on the accuracy of 3D-convolutional neural network (CNN)

阶段(地层学) 胰腺 医学 胰腺癌 卷积神经网络 分割 最小边界框 放射科 人工智能 计算机科学 癌症 内科学 图像(数学) 生物 古生物学
作者
Anurima Patra,Korfiatis Panagiotis,Garima Suman,Ananya Panda,Sushil Kumar Garg,Ajit H. Goenka
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:27 (5_Supplement): PO-084 被引量:1
标识
DOI:10.1158/1557-3265.adi21-po-084
摘要

Abstract Purpose: Around 30% of PDAC less than 2-cm tend to go undetected on CT due to their subtle imaging signatures. Automated detection of PDAC using AI represents an opportunity to augment physician expertise and to improve outcomes through early detection of PDAC. Our purpose was to develop a 3D-CNN for fully automated detection of PDAC and to further evaluate the impact of inclusion of pancreas segmentation on the accuracy of this 3D-CNN. Methods: A Medical Imaging Data Readiness Scale (MIDaR) level A dataset (portal venous phase CTs, slice thickness ≤ 3.75 mm) of 466 treatment-naïve biopsy-proven PDAC and 1994 subjects with normal pancreas was created after exclusion of CTs with suboptimal image quality or biliary stents. Volumetric pancreas and tumor segmentations on CTs were done by two radiologists using 3D Slicer. A total of 370 CTs with PDAC and 370 CTs with normal pancreas were randomly selected for separate training and validation sets, and 396 CTs (96 CTs with PDAC and 300 CTs with normal pancreas) were utilized for testing. Two separate 3D-CNNs were trained. A three-stage bounding-box-only model (A): stage 1 was based on a UNET-like architecture and localized the pancreas on CT with a bounding box; stage 2 utilized an Inception ResNet architecture and classified each slice through the pancreas into PDAC vs. normal; and stage 3 utilized the output of stage 2 to generate final classification for a given CT. Conversely, a four-stage pancreas segmentation-based model (B) included stage 1 of model A followed by an additional stage of automated pancreas and tumor segmentation (stage 2), classification of each slice through the pancreas into PDAC vs. normal (stage 3) and, finally, generation of final classification score (stage 4) for a given CT. Area under the receiver operating characteristic curve (AUROC) of the two models were compared on the test set. Results: Mean (SD) PDAC diameter in the test set was 1.1 (0.43) cm. Model A (three-stage bounding-box-only) correctly classified 305 (77%) out of 396 CTs from the test set into PDAC vs. normal. It incorrectly classified 12/96 (12.5%) CTs with PDAC as normal and 79/300 (26%) normal CTs as PDAC. AUROC for model A was 0.85. Model B (four-stage pancreas segmentation-based) correctly classified 351 (88%) out of 396 CTs. It incorrectly classified 13/96 (13.5%) CTs with PDAC as normal and 32/300 (10.7%) normal CTs as PDAC. AUROC for model B was 0.94. AUROC for model B was significantly higher than model A (p<0.005). Conclusion: A 3D-CNN can detect small PDAC with high accuracy using automated localization of pancreas with a bounding box without relying on separate pancreas segmentation. Inclusion of an additional automated pancreas segmentation step reduced false positives with consequent incremental gain in the model’s accuracy. Prospective validation and subsequent integration of such models into clinical workflows has the potential to reduce inadvertent errors in detection of subtle or small PDAC on standard-of-care CT scans. Citation Format: Anurima Patra, Korfiatis Panagiotis, Garima Suman, Ananya Panda, Sushil Kumar Garg, Ajit Goenka. Automated detection of pancreatic ductal adenocarcinoma (PDAC) on CT scans using artificial intelligence (AI): Impact of inclusion of automated pancreas segmentation on the accuracy of 3D-convolutional neural network (CNN) [abstract]. In: Proceedings of the AACR Virtual Special Conference on Artificial Intelligence, Diagnosis, and Imaging; 2021 Jan 13-14. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(5_Suppl):Abstract nr PO-084.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MINT给MINT的求助进行了留言
刚刚
刚刚
522完成签到,获得积分10
1秒前
3秒前
CES_SH完成签到,获得积分10
3秒前
简简单单发布了新的文献求助10
5秒前
科研小白完成签到,获得积分10
5秒前
JOY完成签到 ,获得积分10
6秒前
吴晨曦发布了新的文献求助10
6秒前
黍黍黍完成签到,获得积分10
7秒前
赘婿应助崔崔崔采纳,获得10
8秒前
8秒前
所所应助yifan92采纳,获得10
8秒前
弱水应助一一采纳,获得30
9秒前
9秒前
9秒前
9秒前
bobinson完成签到,获得积分10
10秒前
11秒前
11秒前
6666666666完成签到 ,获得积分10
12秒前
Rainandbow完成签到,获得积分20
13秒前
多摩川的烟花少年完成签到,获得积分10
13秒前
14秒前
sun发布了新的文献求助10
14秒前
14秒前
Dia发布了新的文献求助30
14秒前
宫宛儿完成签到,获得积分10
15秒前
berrypeng发布了新的文献求助30
15秒前
量子星尘发布了新的文献求助10
15秒前
carry完成签到 ,获得积分10
15秒前
15秒前
16秒前
科研虫儿发布了新的文献求助10
16秒前
浮游应助小僧采纳,获得10
16秒前
19秒前
英姑应助123456采纳,获得10
19秒前
Alex应助mm采纳,获得20
19秒前
刘言完成签到,获得积分20
20秒前
燕忆山发布了新的文献求助30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896894
求助须知:如何正确求助?哪些是违规求助? 4178316
关于积分的说明 12970741
捐赠科研通 3941736
什么是DOI,文献DOI怎么找? 2162347
邀请新用户注册赠送积分活动 1180909
关于科研通互助平台的介绍 1086440