Abstract PO-084: Automated detection of pancreatic ductal adenocarcinoma (PDAC) on CT scans using artificial intelligence (AI): Impact of inclusion of automated pancreas segmentation on the accuracy of 3D-convolutional neural network (CNN)

阶段(地层学) 胰腺 医学 胰腺癌 卷积神经网络 分割 最小边界框 放射科 人工智能 计算机科学 癌症 内科学 图像(数学) 生物 古生物学
作者
Anurima Patra,Korfiatis Panagiotis,Garima Suman,Ananya Panda,Sushil Kumar Garg,Ajit H. Goenka
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:27 (5_Supplement): PO-084 被引量:1
标识
DOI:10.1158/1557-3265.adi21-po-084
摘要

Abstract Purpose: Around 30% of PDAC less than 2-cm tend to go undetected on CT due to their subtle imaging signatures. Automated detection of PDAC using AI represents an opportunity to augment physician expertise and to improve outcomes through early detection of PDAC. Our purpose was to develop a 3D-CNN for fully automated detection of PDAC and to further evaluate the impact of inclusion of pancreas segmentation on the accuracy of this 3D-CNN. Methods: A Medical Imaging Data Readiness Scale (MIDaR) level A dataset (portal venous phase CTs, slice thickness ≤ 3.75 mm) of 466 treatment-naïve biopsy-proven PDAC and 1994 subjects with normal pancreas was created after exclusion of CTs with suboptimal image quality or biliary stents. Volumetric pancreas and tumor segmentations on CTs were done by two radiologists using 3D Slicer. A total of 370 CTs with PDAC and 370 CTs with normal pancreas were randomly selected for separate training and validation sets, and 396 CTs (96 CTs with PDAC and 300 CTs with normal pancreas) were utilized for testing. Two separate 3D-CNNs were trained. A three-stage bounding-box-only model (A): stage 1 was based on a UNET-like architecture and localized the pancreas on CT with a bounding box; stage 2 utilized an Inception ResNet architecture and classified each slice through the pancreas into PDAC vs. normal; and stage 3 utilized the output of stage 2 to generate final classification for a given CT. Conversely, a four-stage pancreas segmentation-based model (B) included stage 1 of model A followed by an additional stage of automated pancreas and tumor segmentation (stage 2), classification of each slice through the pancreas into PDAC vs. normal (stage 3) and, finally, generation of final classification score (stage 4) for a given CT. Area under the receiver operating characteristic curve (AUROC) of the two models were compared on the test set. Results: Mean (SD) PDAC diameter in the test set was 1.1 (0.43) cm. Model A (three-stage bounding-box-only) correctly classified 305 (77%) out of 396 CTs from the test set into PDAC vs. normal. It incorrectly classified 12/96 (12.5%) CTs with PDAC as normal and 79/300 (26%) normal CTs as PDAC. AUROC for model A was 0.85. Model B (four-stage pancreas segmentation-based) correctly classified 351 (88%) out of 396 CTs. It incorrectly classified 13/96 (13.5%) CTs with PDAC as normal and 32/300 (10.7%) normal CTs as PDAC. AUROC for model B was 0.94. AUROC for model B was significantly higher than model A (p<0.005). Conclusion: A 3D-CNN can detect small PDAC with high accuracy using automated localization of pancreas with a bounding box without relying on separate pancreas segmentation. Inclusion of an additional automated pancreas segmentation step reduced false positives with consequent incremental gain in the model’s accuracy. Prospective validation and subsequent integration of such models into clinical workflows has the potential to reduce inadvertent errors in detection of subtle or small PDAC on standard-of-care CT scans. Citation Format: Anurima Patra, Korfiatis Panagiotis, Garima Suman, Ananya Panda, Sushil Kumar Garg, Ajit Goenka. Automated detection of pancreatic ductal adenocarcinoma (PDAC) on CT scans using artificial intelligence (AI): Impact of inclusion of automated pancreas segmentation on the accuracy of 3D-convolutional neural network (CNN) [abstract]. In: Proceedings of the AACR Virtual Special Conference on Artificial Intelligence, Diagnosis, and Imaging; 2021 Jan 13-14. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(5_Suppl):Abstract nr PO-084.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多走一步完成签到,获得积分10
刚刚
w_完成签到,获得积分10
1秒前
爱听歌依波完成签到 ,获得积分10
1秒前
Leon发布了新的文献求助10
1秒前
gsgg完成签到 ,获得积分20
2秒前
笨笨友桃完成签到,获得积分10
2秒前
在水一方应助Huang采纳,获得10
2秒前
3秒前
4秒前
郭郭要努力ya完成签到 ,获得积分10
5秒前
6秒前
科研通AI2S应助Saint采纳,获得10
6秒前
annafan完成签到,获得积分10
6秒前
7秒前
科目三应助雷桑采纳,获得10
7秒前
少吃顿饭并不难完成签到 ,获得积分10
8秒前
珠珠发布了新的文献求助10
8秒前
8秒前
刘三哥完成签到 ,获得积分10
9秒前
隐形曼青应助leederay采纳,获得10
10秒前
上官若男应助to_ooooo采纳,获得10
10秒前
海阔天空发布了新的文献求助10
11秒前
顺心羊完成签到,获得积分10
11秒前
科研_小白完成签到,获得积分10
11秒前
XJTU_jyh完成签到,获得积分10
12秒前
TheaGao完成签到 ,获得积分10
12秒前
不是省油的灯完成签到 ,获得积分10
14秒前
16秒前
16秒前
bububu完成签到,获得积分10
17秒前
nanaki完成签到,获得积分10
17秒前
18秒前
小蘑菇应助lin采纳,获得10
19秒前
19秒前
20秒前
czcz发布了新的文献求助10
20秒前
Sean完成签到 ,获得积分10
23秒前
雷桑发布了新的文献求助10
23秒前
窗户上的喵咪很无聊完成签到 ,获得积分10
24秒前
Saint完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066