Abstract PO-084: Automated detection of pancreatic ductal adenocarcinoma (PDAC) on CT scans using artificial intelligence (AI): Impact of inclusion of automated pancreas segmentation on the accuracy of 3D-convolutional neural network (CNN)

阶段(地层学) 胰腺 医学 胰腺癌 卷积神经网络 分割 最小边界框 放射科 人工智能 计算机科学 癌症 内科学 图像(数学) 生物 古生物学
作者
Anurima Patra,Korfiatis Panagiotis,Garima Suman,Ananya Panda,Sushil Kumar Garg,Ajit H. Goenka
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:27 (5_Supplement): PO-084 被引量:1
标识
DOI:10.1158/1557-3265.adi21-po-084
摘要

Abstract Purpose: Around 30% of PDAC less than 2-cm tend to go undetected on CT due to their subtle imaging signatures. Automated detection of PDAC using AI represents an opportunity to augment physician expertise and to improve outcomes through early detection of PDAC. Our purpose was to develop a 3D-CNN for fully automated detection of PDAC and to further evaluate the impact of inclusion of pancreas segmentation on the accuracy of this 3D-CNN. Methods: A Medical Imaging Data Readiness Scale (MIDaR) level A dataset (portal venous phase CTs, slice thickness ≤ 3.75 mm) of 466 treatment-naïve biopsy-proven PDAC and 1994 subjects with normal pancreas was created after exclusion of CTs with suboptimal image quality or biliary stents. Volumetric pancreas and tumor segmentations on CTs were done by two radiologists using 3D Slicer. A total of 370 CTs with PDAC and 370 CTs with normal pancreas were randomly selected for separate training and validation sets, and 396 CTs (96 CTs with PDAC and 300 CTs with normal pancreas) were utilized for testing. Two separate 3D-CNNs were trained. A three-stage bounding-box-only model (A): stage 1 was based on a UNET-like architecture and localized the pancreas on CT with a bounding box; stage 2 utilized an Inception ResNet architecture and classified each slice through the pancreas into PDAC vs. normal; and stage 3 utilized the output of stage 2 to generate final classification for a given CT. Conversely, a four-stage pancreas segmentation-based model (B) included stage 1 of model A followed by an additional stage of automated pancreas and tumor segmentation (stage 2), classification of each slice through the pancreas into PDAC vs. normal (stage 3) and, finally, generation of final classification score (stage 4) for a given CT. Area under the receiver operating characteristic curve (AUROC) of the two models were compared on the test set. Results: Mean (SD) PDAC diameter in the test set was 1.1 (0.43) cm. Model A (three-stage bounding-box-only) correctly classified 305 (77%) out of 396 CTs from the test set into PDAC vs. normal. It incorrectly classified 12/96 (12.5%) CTs with PDAC as normal and 79/300 (26%) normal CTs as PDAC. AUROC for model A was 0.85. Model B (four-stage pancreas segmentation-based) correctly classified 351 (88%) out of 396 CTs. It incorrectly classified 13/96 (13.5%) CTs with PDAC as normal and 32/300 (10.7%) normal CTs as PDAC. AUROC for model B was 0.94. AUROC for model B was significantly higher than model A (p<0.005). Conclusion: A 3D-CNN can detect small PDAC with high accuracy using automated localization of pancreas with a bounding box without relying on separate pancreas segmentation. Inclusion of an additional automated pancreas segmentation step reduced false positives with consequent incremental gain in the model’s accuracy. Prospective validation and subsequent integration of such models into clinical workflows has the potential to reduce inadvertent errors in detection of subtle or small PDAC on standard-of-care CT scans. Citation Format: Anurima Patra, Korfiatis Panagiotis, Garima Suman, Ananya Panda, Sushil Kumar Garg, Ajit Goenka. Automated detection of pancreatic ductal adenocarcinoma (PDAC) on CT scans using artificial intelligence (AI): Impact of inclusion of automated pancreas segmentation on the accuracy of 3D-convolutional neural network (CNN) [abstract]. In: Proceedings of the AACR Virtual Special Conference on Artificial Intelligence, Diagnosis, and Imaging; 2021 Jan 13-14. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(5_Suppl):Abstract nr PO-084.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
可爱的函函应助自由冬亦采纳,获得10
2秒前
自由可乐应助Bressanone采纳,获得10
2秒前
王昱旻发布了新的文献求助10
3秒前
4秒前
熊泰山完成签到 ,获得积分10
4秒前
炙热怜寒完成签到,获得积分10
4秒前
huminjie给huminjie的求助进行了留言
5秒前
获野千发布了新的文献求助10
5秒前
5秒前
小蘑菇应助剑履上殿采纳,获得10
7秒前
7秒前
快乐的晓刚完成签到,获得积分10
7秒前
8秒前
8秒前
时尚白易完成签到,获得积分10
8秒前
wuda发布了新的文献求助10
8秒前
彩色的德地完成签到,获得积分10
9秒前
hahhhhhh2完成签到,获得积分10
9秒前
彭于彦祖应助炙热怜寒采纳,获得30
9秒前
阿一发布了新的文献求助10
10秒前
wgl完成签到,获得积分10
10秒前
lswhyr完成签到,获得积分10
11秒前
11秒前
嗯哼完成签到 ,获得积分10
11秒前
fangfang完成签到,获得积分10
12秒前
wen完成签到 ,获得积分10
13秒前
诸嚣发布了新的文献求助10
13秒前
13秒前
13秒前
无花果应助玩命的若采纳,获得10
13秒前
14秒前
小泰勒横着走完成签到,获得积分10
14秒前
伊雪儿完成签到,获得积分10
14秒前
14秒前
香蕉觅云应助飞翔云端采纳,获得10
14秒前
15秒前
栗子完成签到 ,获得积分10
16秒前
16秒前
17秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180194
求助须知:如何正确求助?哪些是违规求助? 2830601
关于积分的说明 7978929
捐赠科研通 2492151
什么是DOI,文献DOI怎么找? 1329250
科研通“疑难数据库(出版商)”最低求助积分说明 635708
版权声明 602954