High-resolution prediction of the spatial distribution of PM2.5 concentrations in China using a long short-term memory model

环境科学 随机森林 污染 滞后 微粒 空间分布 气象学 统计 计算机科学 数学 机器学习 地理 化学 生物 有机化学 计算机网络 生态学
作者
Zhige Wang,Yue Zhou,Ruiying Zhao,Nan Wang,Asim Biswas,Zhou Shi
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:297: 126493-126493 被引量:26
标识
DOI:10.1016/j.jclepro.2021.126493
摘要

The concentration of fine particulate matter (PM2.5) has a significant impact on the environment and human health. However, strong spatial heterogeneity and spatiotemporal dependence increases the difficulty of prediction. Moreover, due to the lag of the update of auxiliary variables at national scale in the prediction application, it is still difficult to achieve the timely nationwide PM2.5 prediction at present. To better model and predict real time concentrations and spatial distributions of PM2.5, this study developed a workflow of future PM2.5 concentrations prediction based on long short-term memory (LSTM) model. Using ground-based station PM2.5 data in 2014–2018, the 1 km Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol optical depth (AOD) product and other auxiliary data to predict PM2.5 concentrations in the next year and generate a high-resolution national PM2.5 concentration spatial distribution map. The LSTM model outperformed random forest (RF) and Cubist approaches for prediction PM2.5 because of its recurrent neural network structure that can capture time dependence and nonlinear relationships among PM2.5 concentrations and other independent variables, and exhibited a stable accuracy with an R2 of 0.83, by applying the annual time series, with an improvement of 0.04–0.09, compared to daily and monthly data. The results indicated that PM2.5 pollution had gradually decreased in 2019 after application of pollution controls, with annual mean PM2.5 concentrations of 27.33 ± 15.56 μg m−3, although there were still some areas with severe pollution, including the North China Plain, parts of the Loess Plateau, and the Taklimakan Desert. The LSTM model makes it possible to predict fine-scale PM2.5 spatial distributions nationwide in the future and may thus be useful for sustainable management and control of air pollution at a national scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fiell发布了新的文献求助10
刚刚
Yangbingang给Yangbingang的求助进行了留言
刚刚
年轻的吐司完成签到,获得积分10
刚刚
考研小白完成签到,获得积分10
1秒前
Blaseaka完成签到 ,获得积分10
1秒前
嘻嘻哈哈完成签到,获得积分10
1秒前
keplek完成签到 ,获得积分10
2秒前
给我一颗糖完成签到,获得积分10
2秒前
2秒前
hyekyo完成签到,获得积分10
2秒前
111完成签到,获得积分10
2秒前
LONG完成签到 ,获得积分10
2秒前
2秒前
东皇太一完成签到,获得积分10
3秒前
捕鱼小猫勇往直前完成签到,获得积分10
3秒前
栗子完成签到 ,获得积分10
3秒前
哇啦哇啦呼呼完成签到,获得积分10
3秒前
4秒前
计划明天炸地球完成签到,获得积分10
4秒前
专一的猎豹完成签到,获得积分10
4秒前
无名小卒每文完成签到,获得积分10
5秒前
专一的白萱完成签到 ,获得积分10
6秒前
6秒前
小杨发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
西灵壹完成签到,获得积分10
6秒前
花生发布了新的文献求助10
7秒前
木子木子粒完成签到 ,获得积分10
7秒前
7秒前
Akim应助平淡远山采纳,获得10
7秒前
zhen完成签到 ,获得积分20
7秒前
dique3hao完成签到 ,获得积分10
8秒前
RC_Wang完成签到,获得积分0
8秒前
Mao完成签到,获得积分20
8秒前
凭亿近人发布了新的文献求助10
9秒前
精明尔曼完成签到,获得积分10
9秒前
Avatar完成签到,获得积分10
9秒前
李世民发布了新的文献求助10
9秒前
机密塔完成签到,获得积分10
10秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259