High-resolution prediction of the spatial distribution of PM2.5 concentrations in China using a long short-term memory model

环境科学 随机森林 污染 滞后 微粒 空间分布 气象学 统计 计算机科学 数学 机器学习 地理 化学 生态学 计算机网络 有机化学 生物
作者
Zhige Wang,Yue Zhou,Ruiying Zhao,Nan Wang,Asim Biswas,Zhou Shi
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:297: 126493-126493 被引量:26
标识
DOI:10.1016/j.jclepro.2021.126493
摘要

The concentration of fine particulate matter (PM2.5) has a significant impact on the environment and human health. However, strong spatial heterogeneity and spatiotemporal dependence increases the difficulty of prediction. Moreover, due to the lag of the update of auxiliary variables at national scale in the prediction application, it is still difficult to achieve the timely nationwide PM2.5 prediction at present. To better model and predict real time concentrations and spatial distributions of PM2.5, this study developed a workflow of future PM2.5 concentrations prediction based on long short-term memory (LSTM) model. Using ground-based station PM2.5 data in 2014–2018, the 1 km Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol optical depth (AOD) product and other auxiliary data to predict PM2.5 concentrations in the next year and generate a high-resolution national PM2.5 concentration spatial distribution map. The LSTM model outperformed random forest (RF) and Cubist approaches for prediction PM2.5 because of its recurrent neural network structure that can capture time dependence and nonlinear relationships among PM2.5 concentrations and other independent variables, and exhibited a stable accuracy with an R2 of 0.83, by applying the annual time series, with an improvement of 0.04–0.09, compared to daily and monthly data. The results indicated that PM2.5 pollution had gradually decreased in 2019 after application of pollution controls, with annual mean PM2.5 concentrations of 27.33 ± 15.56 μg m−3, although there were still some areas with severe pollution, including the North China Plain, parts of the Loess Plateau, and the Taklimakan Desert. The LSTM model makes it possible to predict fine-scale PM2.5 spatial distributions nationwide in the future and may thus be useful for sustainable management and control of air pollution at a national scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单书白发布了新的文献求助10
1秒前
1秒前
37星河75发布了新的文献求助10
1秒前
1秒前
李子完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
Owen应助倪小采纳,获得30
2秒前
xxxllllll发布了新的文献求助10
2秒前
Micheal发布了新的文献求助10
2秒前
3秒前
852应助milkmore采纳,获得10
3秒前
3秒前
3秒前
22发布了新的文献求助10
4秒前
热心白枫发布了新的文献求助10
4秒前
soil发布了新的文献求助10
4秒前
wu发布了新的文献求助10
4秒前
4秒前
4秒前
辛勤秋双完成签到,获得积分10
4秒前
华仔应助温大全采纳,获得10
4秒前
Owen应助常馨月采纳,获得10
5秒前
5秒前
2011509382完成签到,获得积分10
6秒前
xpeng发布了新的文献求助10
6秒前
文艺哈密瓜完成签到,获得积分10
6秒前
6秒前
Su发布了新的文献求助10
7秒前
stefanie发布了新的文献求助10
7秒前
zh完成签到,获得积分10
7秒前
7秒前
烦烦烦发布了新的文献求助10
8秒前
8秒前
汉堡包应助祁岳颐采纳,获得10
8秒前
科研通AI6应助xiaoliu采纳,获得10
8秒前
8秒前
lsy发布了新的文献求助10
8秒前
加尔完成签到,获得积分10
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620086
求助须知:如何正确求助?哪些是违规求助? 4704553
关于积分的说明 14928430
捐赠科研通 4760801
什么是DOI,文献DOI怎么找? 2550747
邀请新用户注册赠送积分活动 1513486
关于科研通互助平台的介绍 1474498