High-resolution prediction of the spatial distribution of PM2.5 concentrations in China using a long short-term memory model

环境科学 随机森林 污染 滞后 微粒 空间分布 气象学 统计 计算机科学 数学 机器学习 地理 化学 生态学 计算机网络 有机化学 生物
作者
Zhige Wang,Yue Zhou,Ruiying Zhao,Nan Wang,Asim Biswas,Zhou Shi
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:297: 126493-126493 被引量:26
标识
DOI:10.1016/j.jclepro.2021.126493
摘要

The concentration of fine particulate matter (PM2.5) has a significant impact on the environment and human health. However, strong spatial heterogeneity and spatiotemporal dependence increases the difficulty of prediction. Moreover, due to the lag of the update of auxiliary variables at national scale in the prediction application, it is still difficult to achieve the timely nationwide PM2.5 prediction at present. To better model and predict real time concentrations and spatial distributions of PM2.5, this study developed a workflow of future PM2.5 concentrations prediction based on long short-term memory (LSTM) model. Using ground-based station PM2.5 data in 2014–2018, the 1 km Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol optical depth (AOD) product and other auxiliary data to predict PM2.5 concentrations in the next year and generate a high-resolution national PM2.5 concentration spatial distribution map. The LSTM model outperformed random forest (RF) and Cubist approaches for prediction PM2.5 because of its recurrent neural network structure that can capture time dependence and nonlinear relationships among PM2.5 concentrations and other independent variables, and exhibited a stable accuracy with an R2 of 0.83, by applying the annual time series, with an improvement of 0.04–0.09, compared to daily and monthly data. The results indicated that PM2.5 pollution had gradually decreased in 2019 after application of pollution controls, with annual mean PM2.5 concentrations of 27.33 ± 15.56 μg m−3, although there were still some areas with severe pollution, including the North China Plain, parts of the Loess Plateau, and the Taklimakan Desert. The LSTM model makes it possible to predict fine-scale PM2.5 spatial distributions nationwide in the future and may thus be useful for sustainable management and control of air pollution at a national scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详的小鸽子完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
方远锋完成签到,获得积分10
1秒前
华仔应助flyzhang20采纳,获得10
2秒前
2秒前
2秒前
ask发布了新的文献求助10
4秒前
5秒前
5秒前
Silvia应助科研狗采纳,获得10
6秒前
张莜莜发布了新的文献求助10
6秒前
江南zzn完成签到,获得积分10
7秒前
www发布了新的文献求助10
8秒前
8秒前
重要芷巧发布了新的文献求助10
11秒前
11秒前
传奇3应助鲤鱼松鼠采纳,获得10
11秒前
Orange应助熏风采纳,获得10
12秒前
13秒前
14秒前
毛毛完成签到,获得积分20
15秒前
食小十发布了新的文献求助10
15秒前
小夏完成签到,获得积分10
16秒前
冰烟完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
nczpf2010完成签到,获得积分10
19秒前
flyzhang20发布了新的文献求助10
20秒前
沉默新梅发布了新的文献求助10
20秒前
欢呼山雁发布了新的文献求助10
21秒前
CipherSage应助Warden采纳,获得10
22秒前
食小十完成签到,获得积分20
23秒前
23秒前
震动的翠关注了科研通微信公众号
24秒前
悦耳海亦发布了新的文献求助10
25秒前
柚子完成签到 ,获得积分10
25秒前
找文献呢发布了新的文献求助10
28秒前
李爱国应助医学僧采纳,获得10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679986
求助须知:如何正确求助?哪些是违规求助? 4994921
关于积分的说明 15171248
捐赠科研通 4839686
什么是DOI,文献DOI怎么找? 2593578
邀请新用户注册赠送积分活动 1546615
关于科研通互助平台的介绍 1504727