亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-resolution prediction of the spatial distribution of PM2.5 concentrations in China using a long short-term memory model

环境科学 随机森林 污染 滞后 微粒 空间分布 气象学 统计 计算机科学 数学 机器学习 地理 化学 生态学 计算机网络 有机化学 生物
作者
Zhige Wang,Yue Zhou,Ruiying Zhao,Nan Wang,Asim Biswas,Zhou Shi
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:297: 126493-126493 被引量:26
标识
DOI:10.1016/j.jclepro.2021.126493
摘要

The concentration of fine particulate matter (PM2.5) has a significant impact on the environment and human health. However, strong spatial heterogeneity and spatiotemporal dependence increases the difficulty of prediction. Moreover, due to the lag of the update of auxiliary variables at national scale in the prediction application, it is still difficult to achieve the timely nationwide PM2.5 prediction at present. To better model and predict real time concentrations and spatial distributions of PM2.5, this study developed a workflow of future PM2.5 concentrations prediction based on long short-term memory (LSTM) model. Using ground-based station PM2.5 data in 2014–2018, the 1 km Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol optical depth (AOD) product and other auxiliary data to predict PM2.5 concentrations in the next year and generate a high-resolution national PM2.5 concentration spatial distribution map. The LSTM model outperformed random forest (RF) and Cubist approaches for prediction PM2.5 because of its recurrent neural network structure that can capture time dependence and nonlinear relationships among PM2.5 concentrations and other independent variables, and exhibited a stable accuracy with an R2 of 0.83, by applying the annual time series, with an improvement of 0.04–0.09, compared to daily and monthly data. The results indicated that PM2.5 pollution had gradually decreased in 2019 after application of pollution controls, with annual mean PM2.5 concentrations of 27.33 ± 15.56 μg m−3, although there were still some areas with severe pollution, including the North China Plain, parts of the Loess Plateau, and the Taklimakan Desert. The LSTM model makes it possible to predict fine-scale PM2.5 spatial distributions nationwide in the future and may thus be useful for sustainable management and control of air pollution at a national scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
等待完成签到,获得积分10
4秒前
Anony发布了新的文献求助10
5秒前
勤奋的琳完成签到,获得积分20
5秒前
keyanzhang完成签到 ,获得积分10
5秒前
6秒前
勤奋的琳发布了新的文献求助10
7秒前
10秒前
浮浮世世发布了新的文献求助10
11秒前
argwew完成签到,获得积分10
21秒前
顾良完成签到 ,获得积分10
21秒前
站岗小狗完成签到 ,获得积分10
21秒前
24秒前
Anony发布了新的文献求助10
24秒前
26秒前
26秒前
Yuanyuan发布了新的文献求助10
26秒前
zyx发布了新的文献求助30
28秒前
yxf发布了新的文献求助10
31秒前
31秒前
童童完成签到,获得积分20
32秒前
Ge完成签到,获得积分10
33秒前
ANG完成签到 ,获得积分10
37秒前
Anony完成签到,获得积分10
38秒前
YifanWang应助Ge采纳,获得30
39秒前
41秒前
科研通AI6应助zyx采纳,获得10
43秒前
金平卢仙发布了新的文献求助10
47秒前
50秒前
53秒前
58秒前
机灵的豁完成签到,获得积分10
1分钟前
馍馍完成签到 ,获得积分10
1分钟前
黄黄完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
畅快枕头发布了新的文献求助10
1分钟前
Star发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509270
求助须知:如何正确求助?哪些是违规求助? 4604243
关于积分的说明 14489522
捐赠科研通 4538962
什么是DOI,文献DOI怎么找? 2487229
邀请新用户注册赠送积分活动 1469654
关于科研通互助平台的介绍 1441902