High-resolution prediction of the spatial distribution of PM2.5 concentrations in China using a long short-term memory model

环境科学 随机森林 污染 滞后 微粒 空间分布 气象学 统计 计算机科学 数学 机器学习 地理 化学 生态学 计算机网络 有机化学 生物
作者
Zhige Wang,Yue Zhou,Ruiying Zhao,Nan Wang,Asim Biswas,Zhou Shi
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:297: 126493-126493 被引量:26
标识
DOI:10.1016/j.jclepro.2021.126493
摘要

The concentration of fine particulate matter (PM2.5) has a significant impact on the environment and human health. However, strong spatial heterogeneity and spatiotemporal dependence increases the difficulty of prediction. Moreover, due to the lag of the update of auxiliary variables at national scale in the prediction application, it is still difficult to achieve the timely nationwide PM2.5 prediction at present. To better model and predict real time concentrations and spatial distributions of PM2.5, this study developed a workflow of future PM2.5 concentrations prediction based on long short-term memory (LSTM) model. Using ground-based station PM2.5 data in 2014–2018, the 1 km Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol optical depth (AOD) product and other auxiliary data to predict PM2.5 concentrations in the next year and generate a high-resolution national PM2.5 concentration spatial distribution map. The LSTM model outperformed random forest (RF) and Cubist approaches for prediction PM2.5 because of its recurrent neural network structure that can capture time dependence and nonlinear relationships among PM2.5 concentrations and other independent variables, and exhibited a stable accuracy with an R2 of 0.83, by applying the annual time series, with an improvement of 0.04–0.09, compared to daily and monthly data. The results indicated that PM2.5 pollution had gradually decreased in 2019 after application of pollution controls, with annual mean PM2.5 concentrations of 27.33 ± 15.56 μg m−3, although there were still some areas with severe pollution, including the North China Plain, parts of the Loess Plateau, and the Taklimakan Desert. The LSTM model makes it possible to predict fine-scale PM2.5 spatial distributions nationwide in the future and may thus be useful for sustainable management and control of air pollution at a national scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气缘分完成签到,获得积分10
刚刚
liu完成签到,获得积分10
刚刚
张文发布了新的文献求助10
刚刚
席涑发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
英吉利25发布了新的文献求助10
刚刚
粟裕的风发布了新的文献求助30
刚刚
愉快的隶完成签到,获得积分10
1秒前
1秒前
1秒前
xuyi完成签到,获得积分10
1秒前
lhq完成签到,获得积分10
2秒前
Fudongxue发布了新的文献求助50
3秒前
沉默的西牛完成签到,获得积分20
3秒前
3秒前
3秒前
文建武完成签到,获得积分10
3秒前
4秒前
坦率的尔丝完成签到,获得积分10
4秒前
4秒前
尽舜尧完成签到,获得积分10
4秒前
有结果完成签到,获得积分10
4秒前
阳光海云完成签到,获得积分10
5秒前
yangjoy发布了新的文献求助10
5秒前
5秒前
燕小丙完成签到,获得积分10
6秒前
浮游应助QQ采纳,获得10
6秒前
7秒前
Yao发布了新的文献求助10
7秒前
冷艳水壶完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
木辛艺发布了新的文献求助10
8秒前
Andy完成签到 ,获得积分10
8秒前
Eryri完成签到 ,获得积分10
8秒前
激昂的寒荷完成签到 ,获得积分10
9秒前
qqshown发布了新的文献求助10
9秒前
9秒前
我的账号发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426