High-resolution prediction of the spatial distribution of PM2.5 concentrations in China using a long short-term memory model

环境科学 随机森林 污染 滞后 微粒 空间分布 气象学 统计 计算机科学 数学 机器学习 地理 化学 生态学 计算机网络 有机化学 生物
作者
Zhige Wang,Yue Zhou,Ruiying Zhao,Nan Wang,Asim Biswas,Zhou Shi
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:297: 126493-126493 被引量:26
标识
DOI:10.1016/j.jclepro.2021.126493
摘要

The concentration of fine particulate matter (PM2.5) has a significant impact on the environment and human health. However, strong spatial heterogeneity and spatiotemporal dependence increases the difficulty of prediction. Moreover, due to the lag of the update of auxiliary variables at national scale in the prediction application, it is still difficult to achieve the timely nationwide PM2.5 prediction at present. To better model and predict real time concentrations and spatial distributions of PM2.5, this study developed a workflow of future PM2.5 concentrations prediction based on long short-term memory (LSTM) model. Using ground-based station PM2.5 data in 2014–2018, the 1 km Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol optical depth (AOD) product and other auxiliary data to predict PM2.5 concentrations in the next year and generate a high-resolution national PM2.5 concentration spatial distribution map. The LSTM model outperformed random forest (RF) and Cubist approaches for prediction PM2.5 because of its recurrent neural network structure that can capture time dependence and nonlinear relationships among PM2.5 concentrations and other independent variables, and exhibited a stable accuracy with an R2 of 0.83, by applying the annual time series, with an improvement of 0.04–0.09, compared to daily and monthly data. The results indicated that PM2.5 pollution had gradually decreased in 2019 after application of pollution controls, with annual mean PM2.5 concentrations of 27.33 ± 15.56 μg m−3, although there were still some areas with severe pollution, including the North China Plain, parts of the Loess Plateau, and the Taklimakan Desert. The LSTM model makes it possible to predict fine-scale PM2.5 spatial distributions nationwide in the future and may thus be useful for sustainable management and control of air pollution at a national scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
687发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
猪头完成签到 ,获得积分10
2秒前
jia发布了新的文献求助10
4秒前
sssss完成签到 ,获得积分10
4秒前
4秒前
哈哈嘻嘻完成签到,获得积分10
4秒前
奶昔发布了新的文献求助10
5秒前
mrmrer完成签到,获得积分10
5秒前
Baibai发布了新的文献求助10
5秒前
5秒前
Ammon发布了新的文献求助10
6秒前
你大米哥完成签到 ,获得积分0
6秒前
才是自由完成签到,获得积分20
6秒前
6秒前
Cruffin发布了新的文献求助10
6秒前
NexusExplorer应助tan90采纳,获得10
7秒前
猪头关注了科研通微信公众号
7秒前
guangshuang发布了新的文献求助10
7秒前
贤惠的爆米花完成签到,获得积分10
8秒前
9秒前
linhongwei完成签到,获得积分10
9秒前
英姑应助Jared采纳,获得10
10秒前
善学以致用应助催催催采纳,获得10
11秒前
12138发布了新的文献求助10
12秒前
勾勾完成签到 ,获得积分10
12秒前
13秒前
可爱迷人的反派角色完成签到,获得积分10
13秒前
14秒前
mqq发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
陌上发布了新的文献求助10
15秒前
乐进完成签到,获得积分10
15秒前
16秒前
SciGPT应助OVO采纳,获得10
17秒前
18秒前
asir_xw发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469224
求助须知:如何正确求助?哪些是违规求助? 4572331
关于积分的说明 14335257
捐赠科研通 4499207
什么是DOI,文献DOI怎么找? 2464985
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051