重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Cross-Modality Image Matching Network With Modality-Invariant Feature Representation for Airborne-Ground Thermal Infrared and Visible Datasets

人工智能 计算机科学 遥感 模式识别(心理学) 模态(人机交互) 计算机视觉 不变(物理) 判别式 代表(政治) 特征(语言学) 特征学习 数学 哲学 语言学 政治 政治学 法学 数学物理 地质学
作者
Song Cui,Ailong Ma,Yuting Wan,Yanfei Zhong,Bin Luo,Miaozhong Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:31
标识
DOI:10.1109/tgrs.2021.3099506
摘要

Thermal infrared (TIR) remote-sensing imagery can allow objects to be imaged clearly at night through the long-wave infrared, so that the fusion of thermal infrared and visible (VIS) imagery is a way to improve the remote-sensing interpretation ability. However, due to the large radiation difference between the two kinds of images, it is very difficult to match them. One of the most important issues is the lack of comprehensive consideration of the modality-specific information and modality-shared information, which makes it difficult for the existing methods to obtain a modality-invariant feature representation. In this article, a cross-modality image matching network, which we refer to as CMM-Net, is proposed to realize thermal infrared and visible image matching by learning a modality-invariant feature representation. First, in order to extract the modality-specific features of the imagery, the framework constructs a shallow two-branch network to make full use of the modality-specific information, without sharing parameters. Second, in order to extract the high-level semantic information between the different modalities, modality-shared layers are embedded into the deep layers of the network. In addition, three novel loss functions are designed and combined to learn the modality-invariant feature representation, that is, the discriminative loss of the non-corresponding features in the same modality, the cross-modality loss of the corresponding features between different modalities, and the cross-modality triplet (CMT) loss. The multimodal matching experiments conducted with ground- and airborne-based thermal infrared images and visible images showed that the proposed method outperforms the existing image matching methods by about 2% and 6% for the ground and airborne images, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆雨完成签到 ,获得积分10
1秒前
zhang完成签到,获得积分10
1秒前
lili完成签到,获得积分10
2秒前
彭于晏应助wwewew采纳,获得10
2秒前
陶醉怀梦完成签到 ,获得积分10
2秒前
水菜泽子完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
椰子饭发布了新的文献求助10
3秒前
霸气的小蚂蚁完成签到 ,获得积分10
4秒前
zcy发布了新的文献求助20
4秒前
5秒前
yan_wang发布了新的文献求助30
7秒前
椰子狗完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
WEE完成签到,获得积分20
9秒前
10秒前
墨羽完成签到,获得积分10
11秒前
WEE发布了新的文献求助10
12秒前
Nniu完成签到,获得积分10
13秒前
13秒前
rainyy发布了新的文献求助10
13秒前
小慧发布了新的文献求助10
14秒前
淡淡依白发布了新的文献求助10
14秒前
wwewew发布了新的文献求助10
14秒前
Ava应助Huguizhou采纳,获得10
14秒前
15秒前
YpH发布了新的文献求助10
15秒前
15秒前
小袁完成签到,获得积分10
16秒前
16秒前
火星上的忆枫关注了科研通微信公众号
16秒前
18秒前
独特的绮山完成签到,获得积分10
18秒前
大模型应助清秋采纳,获得10
18秒前
18秒前
萧萧发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468193
求助须知:如何正确求助?哪些是违规求助? 4571644
关于积分的说明 14330855
捐赠科研通 4498131
什么是DOI,文献DOI怎么找? 2464353
邀请新用户注册赠送积分活动 1453088
关于科研通互助平台的介绍 1427739