Cross-Modality Image Matching Network With Modality-Invariant Feature Representation for Airborne-Ground Thermal Infrared and Visible Datasets

人工智能 计算机科学 遥感 模式识别(心理学) 模态(人机交互) 计算机视觉 不变(物理) 判别式 代表(政治) 特征(语言学) 特征学习 数学 语言学 政治 地质学 哲学 数学物理 法学 政治学
作者
Song Cui,Ailong Ma,Yuting Wan,Yanfei Zhong,Bin Luo,Miaozhong Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:31
标识
DOI:10.1109/tgrs.2021.3099506
摘要

Thermal infrared (TIR) remote-sensing imagery can allow objects to be imaged clearly at night through the long-wave infrared, so that the fusion of thermal infrared and visible (VIS) imagery is a way to improve the remote-sensing interpretation ability. However, due to the large radiation difference between the two kinds of images, it is very difficult to match them. One of the most important issues is the lack of comprehensive consideration of the modality-specific information and modality-shared information, which makes it difficult for the existing methods to obtain a modality-invariant feature representation. In this article, a cross-modality image matching network, which we refer to as CMM-Net, is proposed to realize thermal infrared and visible image matching by learning a modality-invariant feature representation. First, in order to extract the modality-specific features of the imagery, the framework constructs a shallow two-branch network to make full use of the modality-specific information, without sharing parameters. Second, in order to extract the high-level semantic information between the different modalities, modality-shared layers are embedded into the deep layers of the network. In addition, three novel loss functions are designed and combined to learn the modality-invariant feature representation, that is, the discriminative loss of the non-corresponding features in the same modality, the cross-modality loss of the corresponding features between different modalities, and the cross-modality triplet (CMT) loss. The multimodal matching experiments conducted with ground- and airborne-based thermal infrared images and visible images showed that the proposed method outperforms the existing image matching methods by about 2% and 6% for the ground and airborne images, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
waye131发布了新的文献求助10
1秒前
AI imaging完成签到,获得积分10
1秒前
2秒前
香蕉觅云应助sanfenzhiyi采纳,获得10
2秒前
3秒前
3秒前
深情安青应助咯咚采纳,获得10
3秒前
杳鸢应助朴素小鸟胃采纳,获得10
4秒前
Sharyn227发布了新的文献求助10
4秒前
科研通AI2S应助杨冰采纳,获得10
4秒前
lili完成签到,获得积分10
4秒前
4秒前
4秒前
6秒前
7秒前
7秒前
秋雅发布了新的文献求助10
8秒前
Tin啊呀呀完成签到,获得积分10
8秒前
8秒前
朴素小鸟胃完成签到,获得积分10
8秒前
9秒前
zmy完成签到,获得积分10
9秒前
10秒前
bcxly发布了新的文献求助10
10秒前
10秒前
陶醉夏青发布了新的文献求助10
12秒前
Ccc发布了新的文献求助30
12秒前
彭于晏应助tong童采纳,获得10
13秒前
usagi关注了科研通微信公众号
14秒前
李李木子发布了新的文献求助10
15秒前
XiangW应助xueshu小裁缝采纳,获得10
16秒前
123发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
20秒前
科目三应助小香香采纳,获得10
23秒前
康2000发布了新的文献求助10
23秒前
啊怪发布了新的文献求助10
24秒前
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233579
求助须知:如何正确求助?哪些是违规求助? 2880164
关于积分的说明 8214083
捐赠科研通 2547585
什么是DOI,文献DOI怎么找? 1377081
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623154