Cross-Modality Image Matching Network With Modality-Invariant Feature Representation for Airborne-Ground Thermal Infrared and Visible Datasets

人工智能 计算机科学 遥感 模式识别(心理学) 模态(人机交互) 计算机视觉 不变(物理) 判别式 代表(政治) 特征(语言学) 特征学习 数学 哲学 语言学 政治 政治学 法学 数学物理 地质学
作者
Song Cui,Ailong Ma,Yuting Wan,Yanfei Zhong,Bin Luo,Miaozhong Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:31
标识
DOI:10.1109/tgrs.2021.3099506
摘要

Thermal infrared (TIR) remote-sensing imagery can allow objects to be imaged clearly at night through the long-wave infrared, so that the fusion of thermal infrared and visible (VIS) imagery is a way to improve the remote-sensing interpretation ability. However, due to the large radiation difference between the two kinds of images, it is very difficult to match them. One of the most important issues is the lack of comprehensive consideration of the modality-specific information and modality-shared information, which makes it difficult for the existing methods to obtain a modality-invariant feature representation. In this article, a cross-modality image matching network, which we refer to as CMM-Net, is proposed to realize thermal infrared and visible image matching by learning a modality-invariant feature representation. First, in order to extract the modality-specific features of the imagery, the framework constructs a shallow two-branch network to make full use of the modality-specific information, without sharing parameters. Second, in order to extract the high-level semantic information between the different modalities, modality-shared layers are embedded into the deep layers of the network. In addition, three novel loss functions are designed and combined to learn the modality-invariant feature representation, that is, the discriminative loss of the non-corresponding features in the same modality, the cross-modality loss of the corresponding features between different modalities, and the cross-modality triplet (CMT) loss. The multimodal matching experiments conducted with ground- and airborne-based thermal infrared images and visible images showed that the proposed method outperforms the existing image matching methods by about 2% and 6% for the ground and airborne images, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
_蝴蝶小姐完成签到,获得积分20
1秒前
田様应助小包采纳,获得10
1秒前
2秒前
顾矜应助kai采纳,获得10
2秒前
科目三应助火星上如松采纳,获得10
3秒前
吃元宵完成签到,获得积分10
3秒前
危机的安容完成签到,获得积分10
3秒前
YZZ完成签到,获得积分10
3秒前
4秒前
4秒前
蚕宝宝完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
搜集达人应助Blanca采纳,获得10
7秒前
威武荔枝完成签到,获得积分10
7秒前
周冯雪完成签到 ,获得积分10
8秒前
8秒前
难过曼冬完成签到 ,获得积分10
8秒前
yanaaa发布了新的文献求助10
9秒前
依依发布了新的文献求助10
9秒前
猪猪hero发布了新的文献求助10
9秒前
9秒前
拿捏陕科大完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
宇文风行发布了新的文献求助10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
Cleo应助科研通管家采纳,获得10
11秒前
amberzyc应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
柏林寒冬应助科研通管家采纳,获得10
11秒前
李超杰应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414850
求助须知:如何正确求助?哪些是违规求助? 4531628
关于积分的说明 14129612
捐赠科研通 4447113
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431660
关于科研通互助平台的介绍 1409301