Cross-Modality Image Matching Network With Modality-Invariant Feature Representation for Airborne-Ground Thermal Infrared and Visible Datasets

人工智能 计算机科学 遥感 模式识别(心理学) 模态(人机交互) 计算机视觉 不变(物理) 判别式 代表(政治) 特征(语言学) 特征学习 数学 语言学 政治 地质学 哲学 数学物理 法学 政治学
作者
Song Cui,Ailong Ma,Yuting Wan,Yanfei Zhong,Bin Luo,Miaozhong Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:31
标识
DOI:10.1109/tgrs.2021.3099506
摘要

Thermal infrared (TIR) remote-sensing imagery can allow objects to be imaged clearly at night through the long-wave infrared, so that the fusion of thermal infrared and visible (VIS) imagery is a way to improve the remote-sensing interpretation ability. However, due to the large radiation difference between the two kinds of images, it is very difficult to match them. One of the most important issues is the lack of comprehensive consideration of the modality-specific information and modality-shared information, which makes it difficult for the existing methods to obtain a modality-invariant feature representation. In this article, a cross-modality image matching network, which we refer to as CMM-Net, is proposed to realize thermal infrared and visible image matching by learning a modality-invariant feature representation. First, in order to extract the modality-specific features of the imagery, the framework constructs a shallow two-branch network to make full use of the modality-specific information, without sharing parameters. Second, in order to extract the high-level semantic information between the different modalities, modality-shared layers are embedded into the deep layers of the network. In addition, three novel loss functions are designed and combined to learn the modality-invariant feature representation, that is, the discriminative loss of the non-corresponding features in the same modality, the cross-modality loss of the corresponding features between different modalities, and the cross-modality triplet (CMT) loss. The multimodal matching experiments conducted with ground- and airborne-based thermal infrared images and visible images showed that the proposed method outperforms the existing image matching methods by about 2% and 6% for the ground and airborne images, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daodaodaodao完成签到,获得积分10
2秒前
4秒前
从容晓凡发布了新的文献求助10
6秒前
鱼圆杂铺发布了新的文献求助10
8秒前
9秒前
翟如风发布了新的文献求助10
9秒前
10秒前
心平气和完成签到,获得积分10
10秒前
大力荷花完成签到,获得积分10
12秒前
12秒前
小白白完成签到 ,获得积分10
12秒前
15秒前
小崔完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
NexusExplorer应助缥缈的铅笔采纳,获得10
19秒前
19秒前
19秒前
从容晓凡完成签到,获得积分20
20秒前
越野发布了新的文献求助10
21秒前
Lucas应助快乐保温杯采纳,获得10
22秒前
echo发布了新的文献求助10
23秒前
鱼圆杂铺完成签到,获得积分0
23秒前
25秒前
28秒前
大耳朵图图完成签到,获得积分10
28秒前
Lucas应助神揽星辰入梦采纳,获得10
29秒前
30秒前
虾虾完成签到,获得积分10
30秒前
chloe完成签到,获得积分20
30秒前
酷炫的凤妖完成签到,获得积分10
30秒前
华仔应助狂奔的蜗牛采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309