化学
四环素
激进的
碳纤维
热解
降级(电信)
核化学
吸附
金属
无机化学
光化学
活性炭
有机化学
抗生素
复合数
材料科学
电信
生物化学
复合材料
计算机科学
作者
Yiqiong Yang,Wenqing Ji,Xingyu Li,Huidong Lin,Hongjia Chen,Fukun Bi,Zenghui Zheng,Jingcheng Xu,Xiaodong Zhang
标识
DOI:10.1016/j.jhazmat.2021.127640
摘要
Tetracycline (TC) is a commonly used antibiotic that has gained wide spread notoriety owing to its high environmental risks. In this study, rich carbonyl-modified carbon-coated Fe0 was obtained by pyrolysis of MIL-100(Fe) in an Ar atmosphere, and used to activate peroxymonosulfate (PMS) for the degradation of tetracycline in water. The roles of Fe0, carbon and surface carbonyl on PMS activation were investigated. Fe0 continuously activated PMS, acted as a sustained-release source of Fe2+, and could effectively activate PMS to produce SO4•-, O2•- and •OH. Carbon was found to do responsible for electron transportation during the activation of PMS and slow down the oxidation of Fe0. The carbonyl group on the carbon surface layer was the active site of 1O2, which explains the enhanced performance for TC degradation. When Ca = 0.1 g/L and C0 = 0.4 mM, TC degradation rate reached 96%, which was attributed to the synergistic effect of radicals (i.e., SO4•-, O2•-, •OH) and non-radical (i.e., 1O2). Finally, the degradation pathway was proposed by combining density functional theory (DFT) calculations with liquid chromatography-mass spectrometry (LC-MS), toxicities of the intermediate products were also evaluated. All results show that carbonyl-modified carbon-coated Fe0 possesses promising capacity for the removal of antibiotics from water.
科研通智能强力驱动
Strongly Powered by AbleSci AI