Advancing thermoelectrics by vacancy engineering and band manipulation in Sb-doped SnTe–CdTe alloys

材料科学 热电效应 兴奋剂 热电材料 凝聚态物理 价(化学) 带偏移量 晶格常数 电子能带结构 有效质量(弹簧-质量系统) 空位缺陷 光电子学 带隙 碲化镉光电 化学 价带 热力学 物理 光学 有机化学 量子力学 衍射
作者
Fujie Zhang,Shan He,Ruiheng Li,Liwei Lin,Ding Ren,Bo Liu,Ran Ang
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:119 (17) 被引量:18
标识
DOI:10.1063/5.0070581
摘要

A decrease in valence band energy offset can considerably improve the thermoelectric performance of SnTe, and alloying CdTe in SnTe has been confirmed to be efficient for inducing band convergence. However, the low solubility of CdTe in SnTe severely limits the further decrease in the energy offset and the reduction of lattice thermal conductivity. Inspired by the high solubility of Sb in SnTe-based thermoelectric materials, the trivalent Sb is introduced into SnTe–CdTe alloys, aiming at manipulating the thermoelectric transport properties. Combined with the valence band model, it is demonstrated that high concentration of Sb in SnTe–CdTe enables a further optimization in valence band structures, resulting in an improvement in density-of-state effective mass, thus significantly reinforces the power factor in the whole temperature range. Meanwhile, we propose the solid solution mode of Sb in SnTe, which always generates vacancies to balance the valence state, and the introduction of vacancies explains the reduced lattice parameters and almost constant carrier concentration. Particularly, the Debye–Callaway model quantitatively compares the contribution of Sb substitutional defects and vacancy defects. As a result, an enhanced zT of ∼1.1 has been achieved for Sn0.83Cd0.05Sb0.12Te at 823 K. This work clearly shows the critical role of Sb for enhancing the thermoelectric performance of SnTe–CdTe materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzznznnn发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
FFFFFFF应助晓军采纳,获得10
2秒前
wanci应助艺玲采纳,获得10
2秒前
jfc完成签到 ,获得积分10
2秒前
香蕉觅云应助月白采纳,获得10
2秒前
思源应助mmx采纳,获得10
2秒前
Diaory2023完成签到 ,获得积分0
2秒前
雪小岳完成签到,获得积分10
3秒前
李小明完成签到,获得积分10
3秒前
3秒前
白小白发布了新的文献求助10
4秒前
thchiang发布了新的文献求助30
4秒前
Crsip关注了科研通微信公众号
4秒前
乐乐应助camellia采纳,获得10
5秒前
小二郎应助无情的白桃采纳,获得10
5秒前
5秒前
研友_Zb1rln完成签到,获得积分10
7秒前
健身boy完成签到,获得积分10
7秒前
盛京烟雨行完成签到 ,获得积分10
7秒前
7秒前
心灵美的大山完成签到,获得积分10
7秒前
7秒前
yuan发布了新的文献求助10
8秒前
诚心八宝粥完成签到,获得积分10
8秒前
9秒前
艺术家完成签到 ,获得积分10
10秒前
10秒前
10秒前
DreamMaker完成签到 ,获得积分10
10秒前
自由完成签到 ,获得积分10
10秒前
请勿继续发布了新的文献求助10
10秒前
聪明宛菡完成签到 ,获得积分10
11秒前
搜集达人应助木子采纳,获得10
12秒前
英姑应助伊丽莎白打工采纳,获得10
12秒前
13秒前
李浓发布了新的文献求助10
13秒前
长情绿凝完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759