An Adaptive Change Threshold Selection Method Based on Land Cover Posterior Probability and Spatial Neighborhood Information

土地覆盖 变更检测 灰度 计算机科学 直方图 贝叶斯概率 空间分析 遥感 封面(代数) 贝叶斯信息准则 后验概率 概率逻辑 像素 模式识别(心理学) 土地利用 人工智能 地理 图像(数学) 土木工程 工程类 机械工程
作者
Huaqiao Xing,Linye Zhu,Yongyu Feng,Wei Wang,Dongyang Hou,Fei Meng,Yuanlong Ni
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 11608-11621 被引量:16
标识
DOI:10.1109/jstars.2021.3124491
摘要

Change threshold selection (CTS) plays an important role in land cover change detection. The traditional CTS methods are mainly proposed by using the information contained in grayscale histogram distributions or pixel neighborhoods. However, land cover is highly spatially heterogeneous, and changes in different land cover types are characterized by different magnitudes. Unfortunately, few CTS studies have considered the effects of both land cover type and spatial heterogeneity on CTS, potentially leading to false alarms or missed alarms. To address this challenge, we propose an adaptive CTS method based on land cover posterior probability and spatial neighborhood information (LCSN). First, the posterior probability of the change magnitude in each land cover type is calculated according to a Bayesian criterion to integrate the land cover type information. Second, the posterior probability is calculated using a bilateral filtering method to construct the spatial surface based on the land cover type and spatial neighborhood information. Finally, the degree of difference between the spatial surface and the change magnitude map is taken as the final threshold. The proposed LCSN method is verified with Landsat 8-Operational Land Imager (OLI) images and IKONOS images. The experimental results show that the LCSN method is effective in reducing the pseudo changes and identifying changes in land cover types with low grayscale values in the corresponding change magnitude maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tophet完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
FashionBoy应助落落采纳,获得10
2秒前
活力的青枫完成签到 ,获得积分10
2秒前
苏素肃发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
空禅yew发布了新的文献求助10
4秒前
汉堡包应助花开的声音1217采纳,获得10
4秒前
ying发布了新的文献求助10
4秒前
animenz完成签到,获得积分10
5秒前
tY发布了新的文献求助10
6秒前
OJL发布了新的文献求助10
6秒前
6秒前
6秒前
柒柒完成签到,获得积分10
6秒前
丘比特应助111采纳,获得10
7秒前
8秒前
8秒前
XShu完成签到,获得积分20
8秒前
xx完成签到 ,获得积分10
9秒前
羊知鱼完成签到,获得积分10
10秒前
公茂源发布了新的文献求助30
10秒前
搞怪不言发布了新的文献求助10
11秒前
DDDD完成签到,获得积分10
11秒前
陈莹发布了新的文献求助10
11秒前
执着的幻柏完成签到,获得积分10
11秒前
12秒前
12秒前
苏素肃完成签到,获得积分10
12秒前
隐形曼青应助sw98318采纳,获得10
13秒前
wangyanwxy发布了新的文献求助10
14秒前
14秒前
搜集达人应助WTF采纳,获得10
15秒前
Ava应助陆靖易采纳,获得10
15秒前
daishuheng完成签到 ,获得积分10
16秒前
OJL完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808