Deep neural survival networks for cardiovascular risk prediction: The Multi-Ethnic Study of Atherosclerosis (MESA)

梅萨 医学 机器学习 内科学 弗雷明翰风险评分 人工智能 杠杆(统计) 范畴变量 动脉粥样硬化性心血管疾病 社区动脉粥样硬化风险 疾病 计算机科学 程序设计语言
作者
Quincy A. Hathaway,Naveena Yanamala,Matthew J. Budoff,Partho P. Sengupta,Irfan Zeb
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:139: 104983-104983 被引量:17
标识
DOI:10.1016/j.compbiomed.2021.104983
摘要

There is growing interest in utilizing machine learning techniques for routine atherosclerotic cardiovascular disease (ASCVD) risk prediction. We investigated whether novel deep learning survival models can augment ASCVD risk prediction over existing statistical and machine learning approaches.6814 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) were followed over 16 years to assess incidence of all-cause mortality (mortality) or a composite of major adverse events (MAE). Features were evaluated within the categories of traditional risk factors, inflammatory biomarkers, and imaging markers. Data was split into an internal training/testing (four centers) and external validation (two centers). Both machine learning (COXPH, RSF, and lSVM) and deep learning (nMTLR and DeepSurv) models were evaluated.In comparison to the COXPH model, DeepSurv significantly improved ASCVD risk prediction for MAE (AUC: 0.82 vs. 0.80, P ≤ 0.001) and mortality (AUC: 0.87 vs. 0.84, P ≤ 0.001) with traditional risk factors alone. Implementing non-categorical NRI, we noted a >40% increase in correct reclassification compared to the COXPH model for both MAE and mortality (P ≤ 0.05). Assessing the relative risk of participants, DeepSurv was the only learning algorithm to develop a significantly improved risk score criteria, which outcompeted COXPH for both MAE (4.22 vs. 3.61, P = 0.043) and mortality (6.81 vs. 5.52, P = 0.044). The addition of inflammatory or imaging biomarkers to traditional risk factors showed minimal/no significant improvement in model prediction.DeepSurv can leverage simple office-based clinical features alone to accurately predict ASCVD risk and cardiovascular outcomes, without the need for additional features, such as inflammatory and imaging biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨颜完成签到,获得积分20
刚刚
刚刚
1秒前
Dali应助结实的胡萝卜采纳,获得10
1秒前
善学以致用应助123123123采纳,获得10
2秒前
2秒前
zp发布了新的文献求助10
2秒前
man完成签到,获得积分10
2秒前
迷你的怀绿完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
酷波er应助dungaway采纳,获得10
4秒前
Medy发布了新的文献求助10
4秒前
4秒前
多科特张发布了新的文献求助10
4秒前
幸运星辰完成签到 ,获得积分10
4秒前
Kirin发布了新的文献求助10
4秒前
传奇3应助墨颜采纳,获得10
6秒前
英俊的铭应助95采纳,获得10
6秒前
隔壁小王完成签到,获得积分10
6秒前
爆米花应助宝宝采纳,获得10
8秒前
8秒前
9秒前
Chloe发布了新的文献求助10
9秒前
10秒前
FCH2023完成签到,获得积分10
10秒前
energetic完成签到,获得积分10
10秒前
11秒前
11秒前
钱多多完成签到 ,获得积分10
11秒前
12秒前
wanci应助小葡萄采纳,获得10
12秒前
12秒前
长亭完成签到,获得积分10
13秒前
奥利奥大王完成签到,获得积分10
13秒前
nn发布了新的文献求助10
14秒前
QinYuan发布了新的文献求助10
15秒前
合适的小馒头完成签到,获得积分10
15秒前
15秒前
CompJIN发布了新的文献求助10
15秒前
小涛涛发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674