Deep neural survival networks for cardiovascular risk prediction: The Multi-Ethnic Study of Atherosclerosis (MESA)

梅萨 医学 机器学习 内科学 弗雷明翰风险评分 人工智能 杠杆(统计) 范畴变量 动脉粥样硬化性心血管疾病 社区动脉粥样硬化风险 疾病 计算机科学 程序设计语言
作者
Quincy A. Hathaway,Naveena Yanamala,Matthew J. Budoff,Partho P. Sengupta,Irfan Zeb
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:139: 104983-104983 被引量:17
标识
DOI:10.1016/j.compbiomed.2021.104983
摘要

There is growing interest in utilizing machine learning techniques for routine atherosclerotic cardiovascular disease (ASCVD) risk prediction. We investigated whether novel deep learning survival models can augment ASCVD risk prediction over existing statistical and machine learning approaches.6814 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) were followed over 16 years to assess incidence of all-cause mortality (mortality) or a composite of major adverse events (MAE). Features were evaluated within the categories of traditional risk factors, inflammatory biomarkers, and imaging markers. Data was split into an internal training/testing (four centers) and external validation (two centers). Both machine learning (COXPH, RSF, and lSVM) and deep learning (nMTLR and DeepSurv) models were evaluated.In comparison to the COXPH model, DeepSurv significantly improved ASCVD risk prediction for MAE (AUC: 0.82 vs. 0.80, P ≤ 0.001) and mortality (AUC: 0.87 vs. 0.84, P ≤ 0.001) with traditional risk factors alone. Implementing non-categorical NRI, we noted a >40% increase in correct reclassification compared to the COXPH model for both MAE and mortality (P ≤ 0.05). Assessing the relative risk of participants, DeepSurv was the only learning algorithm to develop a significantly improved risk score criteria, which outcompeted COXPH for both MAE (4.22 vs. 3.61, P = 0.043) and mortality (6.81 vs. 5.52, P = 0.044). The addition of inflammatory or imaging biomarkers to traditional risk factors showed minimal/no significant improvement in model prediction.DeepSurv can leverage simple office-based clinical features alone to accurately predict ASCVD risk and cardiovascular outcomes, without the need for additional features, such as inflammatory and imaging biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注蚂蚁完成签到,获得积分10
刚刚
寒冷依秋完成签到,获得积分10
刚刚
肝胆一把刀完成签到,获得积分10
刚刚
刚刚
鲤鱼寄瑶完成签到 ,获得积分10
1秒前
沐晨浠完成签到,获得积分10
1秒前
zmy完成签到,获得积分10
1秒前
SciGPT应助李璃采纳,获得10
2秒前
Ting222发布了新的文献求助10
3秒前
猫咪乖乖爱你完成签到,获得积分10
3秒前
和风完成签到,获得积分10
4秒前
金玲婷发布了新的文献求助10
4秒前
5秒前
Leslie完成签到,获得积分10
5秒前
yaoo完成签到,获得积分10
6秒前
mm完成签到,获得积分10
7秒前
ww发布了新的文献求助10
7秒前
欣慰的寒烟完成签到,获得积分10
7秒前
8秒前
赘婿应助流光采纳,获得10
9秒前
秋qiu发布了新的文献求助10
9秒前
9秒前
10秒前
杨涵完成签到,获得积分10
10秒前
风筝有风发布了新的文献求助10
10秒前
Christina完成签到,获得积分10
10秒前
吴建洺完成签到,获得积分10
10秒前
11秒前
笨笨猪完成签到,获得积分10
11秒前
12秒前
cc完成签到,获得积分10
12秒前
慕青应助南湖秋水采纳,获得10
13秒前
JamesPei应助weisuonan101采纳,获得10
13秒前
搜集达人应助guo采纳,获得10
13秒前
研友_8DrBkn发布了新的文献求助10
14秒前
和平使命应助zhiweiyan采纳,获得10
14秒前
14秒前
CrazyRichard发布了新的文献求助10
15秒前
15秒前
zoro完成签到,获得积分20
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309005
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508619
捐赠科研通 2617432
什么是DOI,文献DOI怎么找? 1430073
科研通“疑难数据库(出版商)”最低求助积分说明 664018
邀请新用户注册赠送积分活动 649234