亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep neural survival networks for cardiovascular risk prediction: The Multi-Ethnic Study of Atherosclerosis (MESA)

梅萨 医学 机器学习 内科学 弗雷明翰风险评分 人工智能 杠杆(统计) 范畴变量 动脉粥样硬化性心血管疾病 社区动脉粥样硬化风险 疾病 计算机科学 程序设计语言
作者
Quincy A. Hathaway,Naveena Yanamala,Matthew J. Budoff,Partho P. Sengupta,Irfan Zeb
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:139: 104983-104983 被引量:17
标识
DOI:10.1016/j.compbiomed.2021.104983
摘要

There is growing interest in utilizing machine learning techniques for routine atherosclerotic cardiovascular disease (ASCVD) risk prediction. We investigated whether novel deep learning survival models can augment ASCVD risk prediction over existing statistical and machine learning approaches.6814 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) were followed over 16 years to assess incidence of all-cause mortality (mortality) or a composite of major adverse events (MAE). Features were evaluated within the categories of traditional risk factors, inflammatory biomarkers, and imaging markers. Data was split into an internal training/testing (four centers) and external validation (two centers). Both machine learning (COXPH, RSF, and lSVM) and deep learning (nMTLR and DeepSurv) models were evaluated.In comparison to the COXPH model, DeepSurv significantly improved ASCVD risk prediction for MAE (AUC: 0.82 vs. 0.80, P ≤ 0.001) and mortality (AUC: 0.87 vs. 0.84, P ≤ 0.001) with traditional risk factors alone. Implementing non-categorical NRI, we noted a >40% increase in correct reclassification compared to the COXPH model for both MAE and mortality (P ≤ 0.05). Assessing the relative risk of participants, DeepSurv was the only learning algorithm to develop a significantly improved risk score criteria, which outcompeted COXPH for both MAE (4.22 vs. 3.61, P = 0.043) and mortality (6.81 vs. 5.52, P = 0.044). The addition of inflammatory or imaging biomarkers to traditional risk factors showed minimal/no significant improvement in model prediction.DeepSurv can leverage simple office-based clinical features alone to accurately predict ASCVD risk and cardiovascular outcomes, without the need for additional features, such as inflammatory and imaging biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呜呜吴完成签到,获得积分10
10秒前
10秒前
Lucas应助mogekkko采纳,获得10
11秒前
14秒前
xyjf15发布了新的文献求助50
17秒前
18秒前
宁不正完成签到 ,获得积分20
19秒前
背后一江发布了新的文献求助10
20秒前
第二支羽毛完成签到,获得积分10
22秒前
赵一谋发布了新的文献求助10
24秒前
24秒前
27秒前
serendipity完成签到 ,获得积分10
27秒前
今后应助mogekkko采纳,获得10
29秒前
斯通纳完成签到 ,获得积分10
33秒前
搜集达人应助李洛华哥采纳,获得10
35秒前
苹果王子6699完成签到 ,获得积分10
36秒前
CipherSage应助宁不正采纳,获得10
39秒前
若宫伊芙应助兜兜采纳,获得10
42秒前
烟花应助mogekkko采纳,获得10
44秒前
45秒前
nazhang发布了新的文献求助10
49秒前
50秒前
赵一谋发布了新的文献求助10
52秒前
54秒前
54秒前
852应助科研通管家采纳,获得10
54秒前
落寞依珊完成签到,获得积分10
54秒前
wzy完成签到,获得积分10
56秒前
mogekkko发布了新的文献求助10
57秒前
青柚完成签到 ,获得积分10
57秒前
田様应助殷楷霖采纳,获得10
59秒前
bkagyin应助wing00024采纳,获得10
1分钟前
大个应助跳跃的小之采纳,获得10
1分钟前
mogekkko发布了新的文献求助10
1分钟前
天天快乐应助MJH123456采纳,获得10
1分钟前
1分钟前
stresm完成签到,获得积分10
1分钟前
小星星完成签到 ,获得积分10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644428
求助须知:如何正确求助?哪些是违规求助? 4764178
关于积分的说明 15025100
捐赠科研通 4802856
什么是DOI,文献DOI怎么找? 2567622
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484790