亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep neural survival networks for cardiovascular risk prediction: The Multi-Ethnic Study of Atherosclerosis (MESA)

梅萨 医学 机器学习 内科学 弗雷明翰风险评分 人工智能 杠杆(统计) 范畴变量 动脉粥样硬化性心血管疾病 社区动脉粥样硬化风险 疾病 计算机科学 程序设计语言
作者
Quincy A. Hathaway,Naveena Yanamala,Matthew J. Budoff,Partho P. Sengupta,Irfan Zeb
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:139: 104983-104983 被引量:17
标识
DOI:10.1016/j.compbiomed.2021.104983
摘要

There is growing interest in utilizing machine learning techniques for routine atherosclerotic cardiovascular disease (ASCVD) risk prediction. We investigated whether novel deep learning survival models can augment ASCVD risk prediction over existing statistical and machine learning approaches.6814 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) were followed over 16 years to assess incidence of all-cause mortality (mortality) or a composite of major adverse events (MAE). Features were evaluated within the categories of traditional risk factors, inflammatory biomarkers, and imaging markers. Data was split into an internal training/testing (four centers) and external validation (two centers). Both machine learning (COXPH, RSF, and lSVM) and deep learning (nMTLR and DeepSurv) models were evaluated.In comparison to the COXPH model, DeepSurv significantly improved ASCVD risk prediction for MAE (AUC: 0.82 vs. 0.80, P ≤ 0.001) and mortality (AUC: 0.87 vs. 0.84, P ≤ 0.001) with traditional risk factors alone. Implementing non-categorical NRI, we noted a >40% increase in correct reclassification compared to the COXPH model for both MAE and mortality (P ≤ 0.05). Assessing the relative risk of participants, DeepSurv was the only learning algorithm to develop a significantly improved risk score criteria, which outcompeted COXPH for both MAE (4.22 vs. 3.61, P = 0.043) and mortality (6.81 vs. 5.52, P = 0.044). The addition of inflammatory or imaging biomarkers to traditional risk factors showed minimal/no significant improvement in model prediction.DeepSurv can leverage simple office-based clinical features alone to accurately predict ASCVD risk and cardiovascular outcomes, without the need for additional features, such as inflammatory and imaging biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助郭楠楠采纳,获得10
7秒前
22秒前
27秒前
量子星尘发布了新的文献求助10
33秒前
38秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
隐形不凡完成签到,获得积分10
51秒前
温暖的乐蓉关注了科研通微信公众号
1分钟前
李桂芳完成签到,获得积分10
1分钟前
1分钟前
急诊守夜人完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
robin完成签到 ,获得积分10
1分钟前
万能图书馆应助HH采纳,获得10
1分钟前
吾日三省吾身完成签到 ,获得积分10
2分钟前
英姑应助风华正茂采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得50
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Lulu发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
HH发布了新的文献求助10
3分钟前
Lulu完成签到,获得积分10
3分钟前
Yuki完成签到 ,获得积分10
3分钟前
CC完成签到,获得积分10
3分钟前
badyoungboy完成签到,获得积分10
3分钟前
badyoungboy发布了新的文献求助10
3分钟前
北陌完成签到 ,获得积分10
3分钟前
领导范儿应助郭楠楠采纳,获得10
3分钟前
完美世界应助木棉采纳,获得10
4分钟前
Nature应助yangjian采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664330
求助须知:如何正确求助?哪些是违规求助? 4860894
关于积分的说明 15107549
捐赠科研通 4822849
什么是DOI,文献DOI怎么找? 2581773
邀请新用户注册赠送积分活动 1535993
关于科研通互助平台的介绍 1494287