Deep neural survival networks for cardiovascular risk prediction: The Multi-Ethnic Study of Atherosclerosis (MESA)

梅萨 医学 机器学习 内科学 弗雷明翰风险评分 人工智能 杠杆(统计) 范畴变量 动脉粥样硬化性心血管疾病 社区动脉粥样硬化风险 疾病 计算机科学 程序设计语言
作者
Quincy A. Hathaway,Naveena Yanamala,Matthew J. Budoff,Partho P. Sengupta,Irfan Zeb
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:139: 104983-104983 被引量:17
标识
DOI:10.1016/j.compbiomed.2021.104983
摘要

There is growing interest in utilizing machine learning techniques for routine atherosclerotic cardiovascular disease (ASCVD) risk prediction. We investigated whether novel deep learning survival models can augment ASCVD risk prediction over existing statistical and machine learning approaches.6814 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) were followed over 16 years to assess incidence of all-cause mortality (mortality) or a composite of major adverse events (MAE). Features were evaluated within the categories of traditional risk factors, inflammatory biomarkers, and imaging markers. Data was split into an internal training/testing (four centers) and external validation (two centers). Both machine learning (COXPH, RSF, and lSVM) and deep learning (nMTLR and DeepSurv) models were evaluated.In comparison to the COXPH model, DeepSurv significantly improved ASCVD risk prediction for MAE (AUC: 0.82 vs. 0.80, P ≤ 0.001) and mortality (AUC: 0.87 vs. 0.84, P ≤ 0.001) with traditional risk factors alone. Implementing non-categorical NRI, we noted a >40% increase in correct reclassification compared to the COXPH model for both MAE and mortality (P ≤ 0.05). Assessing the relative risk of participants, DeepSurv was the only learning algorithm to develop a significantly improved risk score criteria, which outcompeted COXPH for both MAE (4.22 vs. 3.61, P = 0.043) and mortality (6.81 vs. 5.52, P = 0.044). The addition of inflammatory or imaging biomarkers to traditional risk factors showed minimal/no significant improvement in model prediction.DeepSurv can leverage simple office-based clinical features alone to accurately predict ASCVD risk and cardiovascular outcomes, without the need for additional features, such as inflammatory and imaging biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助科研通管家采纳,获得10
刚刚
momo发布了新的文献求助10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
蓝天应助科研通管家采纳,获得10
刚刚
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
发发完成签到,获得积分10
1秒前
Judy完成签到 ,获得积分10
1秒前
Liniong发布了新的文献求助10
2秒前
2秒前
wxy发布了新的文献求助10
2秒前
一天天完成签到,获得积分10
3秒前
鸣笛应助卖包的小行家采纳,获得10
3秒前
涛哥完成签到,获得积分10
3秒前
3秒前
科目三应助畅快山兰采纳,获得10
3秒前
欣喜谷槐发布了新的文献求助10
3秒前
4秒前
4秒前
杨立豪完成签到,获得积分20
4秒前
李爱国应助喵喵采纳,获得10
5秒前
赘婿应助无敌万达阿迪萨采纳,获得10
5秒前
muzi完成签到,获得积分10
6秒前
6秒前
FXY发布了新的文献求助10
6秒前
杨立豪发布了新的文献求助10
7秒前
妩媚的代玉完成签到 ,获得积分20
7秒前
8秒前
欣喜谷槐完成签到,获得积分10
8秒前
木木SCI完成签到 ,获得积分10
8秒前
我是老大应助hhhh采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575863
求助须知:如何正确求助?哪些是违规求助? 3995272
关于积分的说明 12368236
捐赠科研通 3669085
什么是DOI,文献DOI怎么找? 2022092
邀请新用户注册赠送积分活动 1056109
科研通“疑难数据库(出版商)”最低求助积分说明 943424