Limitations and Improvements of the Intelligent Driver Model (IDM)

计算机科学 实施 加速度 常微分方程 编码(集合论) 高级驾驶员辅助系统 模拟 微分方程 人工智能 数学 经典力学 物理 数学分析 集合(抽象数据类型) 程序设计语言
作者
Saleh Albeaik,Alexandre M. Bayen,Maria Teresa Chiri,Xiaoqian Gong,Amaury Hayat,Nicolas Kardous,Alexander Keimer,Sean T. McQuade,Benedetto Piccoli,Yiling You
出处
期刊:Siam Journal on Applied Dynamical Systems [Society for Industrial and Applied Mathematics]
卷期号:21 (3): 1862-1892 被引量:28
标识
DOI:10.1137/21m1406477
摘要

This contribution analyzes the widely used and well-known “intelligent driver model” (briefly IDM), which is a second-order car-following model governed by a system of ordinary differential equations. Although this model was intensively studied in recent years for properly capturing traffic phenomena and driver braking behavior, a rigorous study of the well-posedness has, to our knowledge, never been performed. First, it is shown that, for a specific class of initial data, the vehicles' velocities become negative or even diverge to (-\infty\) in finite time, both undesirable properties for a car-following model. Various modifications of the IDM are then proposed in order to avoid such ill-posedness. The theoretical remediation of the model, rather than post facto by ad hoc modification of code implementations, allows a more sound numerical implementation and preservation of the model features. Indeed, to avoid inconsistencies and ensure dynamics close to the one of the original model, one may need to inspect and clean large input data, which may result in practically impossible scenarios for large-scale simulations. Although well-posedness issues might only occur for specific initial data, this may happen frequently when different traffic scenarios are analyzed and especially in the presence of lane changing, on-ramps, and other network components, as it is the case for most commonly used microsimulators. On the other side, it is shown that well-posedness can be guaranteed by straight-forward improvements, such as those obtained by slightly changing the acceleration to prevent the velocity from becoming negative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鄢廷芮发布了新的文献求助10
1秒前
2秒前
3秒前
Harry发布了新的文献求助10
4秒前
wang发布了新的文献求助10
7秒前
淡然老头完成签到 ,获得积分10
9秒前
9秒前
美好焦发布了新的文献求助10
9秒前
10秒前
17完成签到,获得积分20
12秒前
Lucas应助phw2333采纳,获得20
12秒前
Joe完成签到,获得积分10
14秒前
14秒前
berg发布了新的文献求助10
16秒前
万能图书馆应助wang采纳,获得10
17秒前
boogie发布了新的文献求助30
17秒前
量子星尘发布了新的文献求助10
17秒前
17发布了新的文献求助10
17秒前
李健的小迷弟应助ningwu采纳,获得10
17秒前
情怀应助mmm采纳,获得30
18秒前
Aprilapple发布了新的文献求助10
18秒前
我是老大应助zjh采纳,获得10
19秒前
20秒前
m___发布了新的文献求助10
20秒前
安于心发布了新的文献求助10
20秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
21秒前
22秒前
Harry完成签到,获得积分10
23秒前
23秒前
benbenca发布了新的文献求助10
24秒前
可乐SAMA完成签到,获得积分10
26秒前
27秒前
27秒前
脑洞疼应助安于心采纳,获得10
28秒前
小宋发布了新的文献求助10
29秒前
卫绯发布了新的文献求助10
32秒前
文静千凡发布了新的文献求助10
32秒前
mmz完成签到,获得积分10
33秒前
紫紫完成签到,获得积分10
35秒前
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309