Limitations and Improvements of the Intelligent Driver Model (IDM)

计算机科学 实施 加速度 常微分方程 编码(集合论) 高级驾驶员辅助系统 模拟 微分方程 人工智能 数学 经典力学 物理 数学分析 集合(抽象数据类型) 程序设计语言
作者
Saleh Albeaik,Alexandre M. Bayen,Maria Teresa Chiri,Xiaoqian Gong,Amaury Hayat,Nicolas Kardous,Alexander Keimer,Sean T. McQuade,Benedetto Piccoli,Yiling You
出处
期刊:Siam Journal on Applied Dynamical Systems [Society for Industrial and Applied Mathematics]
卷期号:21 (3): 1862-1892 被引量:28
标识
DOI:10.1137/21m1406477
摘要

This contribution analyzes the widely used and well-known “intelligent driver model” (briefly IDM), which is a second-order car-following model governed by a system of ordinary differential equations. Although this model was intensively studied in recent years for properly capturing traffic phenomena and driver braking behavior, a rigorous study of the well-posedness has, to our knowledge, never been performed. First, it is shown that, for a specific class of initial data, the vehicles' velocities become negative or even diverge to (-\infty\) in finite time, both undesirable properties for a car-following model. Various modifications of the IDM are then proposed in order to avoid such ill-posedness. The theoretical remediation of the model, rather than post facto by ad hoc modification of code implementations, allows a more sound numerical implementation and preservation of the model features. Indeed, to avoid inconsistencies and ensure dynamics close to the one of the original model, one may need to inspect and clean large input data, which may result in practically impossible scenarios for large-scale simulations. Although well-posedness issues might only occur for specific initial data, this may happen frequently when different traffic scenarios are analyzed and especially in the presence of lane changing, on-ramps, and other network components, as it is the case for most commonly used microsimulators. On the other side, it is shown that well-posedness can be guaranteed by straight-forward improvements, such as those obtained by slightly changing the acceleration to prevent the velocity from becoming negative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bo关注了科研通微信公众号
2秒前
小太阳发布了新的文献求助10
2秒前
2秒前
科研通AI6应助心信鑫采纳,获得10
2秒前
zhouyms完成签到,获得积分10
3秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
李晓萌完成签到 ,获得积分10
7秒前
8秒前
mfy0068完成签到 ,获得积分10
8秒前
传奇3应助科研小秦采纳,获得10
9秒前
10秒前
yjh发布了新的文献求助10
11秒前
向日葵1完成签到,获得积分10
12秒前
wanci应助动人的汉堡采纳,获得10
12秒前
FashionBoy应助Jing采纳,获得20
13秒前
14秒前
微笑仙人掌完成签到 ,获得积分10
14秒前
隐形的凡阳完成签到,获得积分10
14秒前
充电宝应助xx采纳,获得10
14秒前
14秒前
15秒前
Maxine完成签到 ,获得积分10
16秒前
16秒前
林柠发布了新的文献求助10
17秒前
18秒前
Bo发布了新的文献求助10
19秒前
19秒前
昏昏应助hengyuan采纳,获得10
20秒前
20秒前
ghn123456789完成签到,获得积分10
21秒前
21秒前
小兔发布了新的文献求助10
21秒前
浮游应助ZWX采纳,获得10
22秒前
22秒前
金鑫鑫完成签到,获得积分10
23秒前
23秒前
24秒前
左君豪发布了新的文献求助10
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443221
求助须知:如何正确求助?哪些是违规求助? 4553119
关于积分的说明 14241113
捐赠科研通 4474726
什么是DOI,文献DOI怎么找? 2452134
邀请新用户注册赠送积分活动 1443079
关于科研通互助平台的介绍 1418721