Limitations and Improvements of the Intelligent Driver Model (IDM)

计算机科学 实施 加速度 常微分方程 编码(集合论) 高级驾驶员辅助系统 模拟 微分方程 人工智能 数学 经典力学 物理 数学分析 集合(抽象数据类型) 程序设计语言
作者
Saleh Albeaik,Alexandre M. Bayen,Maria Teresa Chiri,Xiaoqian Gong,Amaury Hayat,Nicolas Kardous,Alexander Keimer,Sean T. McQuade,Benedetto Piccoli,Yiling You
出处
期刊:Siam Journal on Applied Dynamical Systems [Society for Industrial and Applied Mathematics]
卷期号:21 (3): 1862-1892 被引量:28
标识
DOI:10.1137/21m1406477
摘要

This contribution analyzes the widely used and well-known “intelligent driver model” (briefly IDM), which is a second-order car-following model governed by a system of ordinary differential equations. Although this model was intensively studied in recent years for properly capturing traffic phenomena and driver braking behavior, a rigorous study of the well-posedness has, to our knowledge, never been performed. First, it is shown that, for a specific class of initial data, the vehicles' velocities become negative or even diverge to (-\infty\) in finite time, both undesirable properties for a car-following model. Various modifications of the IDM are then proposed in order to avoid such ill-posedness. The theoretical remediation of the model, rather than post facto by ad hoc modification of code implementations, allows a more sound numerical implementation and preservation of the model features. Indeed, to avoid inconsistencies and ensure dynamics close to the one of the original model, one may need to inspect and clean large input data, which may result in practically impossible scenarios for large-scale simulations. Although well-posedness issues might only occur for specific initial data, this may happen frequently when different traffic scenarios are analyzed and especially in the presence of lane changing, on-ramps, and other network components, as it is the case for most commonly used microsimulators. On the other side, it is shown that well-posedness can be guaranteed by straight-forward improvements, such as those obtained by slightly changing the acceleration to prevent the velocity from becoming negative.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kongzhiqiqi完成签到,获得积分10
刚刚
小蘑菇应助等等采纳,获得10
刚刚
Ava应助虚幻灵松采纳,获得10
刚刚
安然发布了新的文献求助10
刚刚
Sophia完成签到,获得积分10
刚刚
yimu完成签到,获得积分10
1秒前
呆呆兽完成签到,获得积分10
1秒前
john2333发布了新的文献求助10
2秒前
夏侯幻梦发布了新的文献求助10
2秒前
2秒前
2秒前
坤舆探骊者完成签到,获得积分10
3秒前
帅气的香之完成签到,获得积分10
3秒前
科研通AI6.1应助酷炫大米采纳,获得10
3秒前
科研通AI6.1应助FEN采纳,获得10
4秒前
CodeCraft应助Herry-Jeremy采纳,获得10
4秒前
5秒前
5秒前
5秒前
汤圆圆儿完成签到,获得积分10
6秒前
Mingyue123完成签到,获得积分10
6秒前
科研通AI2S应助丢丢丢采纳,获得30
7秒前
量子星尘发布了新的文献求助10
7秒前
可爱的函函应助陆柒采纳,获得10
7秒前
wkkky发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
Elan完成签到,获得积分10
10秒前
surina发布了新的文献求助10
10秒前
多啦a萌发布了新的文献求助10
10秒前
不曾留步发布了新的文献求助10
10秒前
old赵应助六节为名采纳,获得10
11秒前
wangfeng007发布了新的文献求助30
12秒前
12秒前
李雨完成签到,获得积分10
12秒前
Maestro_S应助糕糕高高采纳,获得10
12秒前
12秒前
木头完成签到,获得积分10
12秒前
濮阳冰海完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002