Limitations and Improvements of the Intelligent Driver Model (IDM)

计算机科学 实施 加速度 常微分方程 编码(集合论) 高级驾驶员辅助系统 模拟 微分方程 人工智能 数学 经典力学 物理 数学分析 集合(抽象数据类型) 程序设计语言
作者
Saleh Albeaik,Alexandre M. Bayen,Maria Teresa Chiri,Xiaoqian Gong,Amaury Hayat,Nicolas Kardous,Alexander Keimer,Sean T. McQuade,Benedetto Piccoli,Yiling You
出处
期刊:Siam Journal on Applied Dynamical Systems [Society for Industrial and Applied Mathematics]
卷期号:21 (3): 1862-1892 被引量:28
标识
DOI:10.1137/21m1406477
摘要

This contribution analyzes the widely used and well-known “intelligent driver model” (briefly IDM), which is a second-order car-following model governed by a system of ordinary differential equations. Although this model was intensively studied in recent years for properly capturing traffic phenomena and driver braking behavior, a rigorous study of the well-posedness has, to our knowledge, never been performed. First, it is shown that, for a specific class of initial data, the vehicles' velocities become negative or even diverge to (-\infty\) in finite time, both undesirable properties for a car-following model. Various modifications of the IDM are then proposed in order to avoid such ill-posedness. The theoretical remediation of the model, rather than post facto by ad hoc modification of code implementations, allows a more sound numerical implementation and preservation of the model features. Indeed, to avoid inconsistencies and ensure dynamics close to the one of the original model, one may need to inspect and clean large input data, which may result in practically impossible scenarios for large-scale simulations. Although well-posedness issues might only occur for specific initial data, this may happen frequently when different traffic scenarios are analyzed and especially in the presence of lane changing, on-ramps, and other network components, as it is the case for most commonly used microsimulators. On the other side, it is shown that well-posedness can be guaranteed by straight-forward improvements, such as those obtained by slightly changing the acceleration to prevent the velocity from becoming negative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
日光下发布了新的文献求助10
2秒前
2秒前
纪秋完成签到,获得积分10
3秒前
3秒前
3秒前
波粒海苔发布了新的文献求助10
3秒前
雪白的以丹完成签到,获得积分10
4秒前
周浩宇完成签到,获得积分20
4秒前
5秒前
贺知什么书完成签到,获得积分10
5秒前
现实的听芹完成签到,获得积分10
6秒前
少吃两口发布了新的文献求助10
6秒前
7秒前
梧桐的灯完成签到,获得积分10
8秒前
77发布了新的文献求助10
8秒前
Wenpandaen应助niqiu采纳,获得10
9秒前
10秒前
10秒前
在水一方应助波粒海苔采纳,获得10
10秒前
坛子完成签到,获得积分10
11秒前
12秒前
13秒前
别骂小喷菇完成签到,获得积分10
13秒前
W某人完成签到,获得积分10
14秒前
LINHAI完成签到,获得积分10
14秒前
15秒前
where发布了新的文献求助10
15秒前
派派关注了科研通微信公众号
15秒前
17秒前
homie发布了新的文献求助10
17秒前
那种完成签到,获得积分10
17秒前
如意新晴发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
Hello应助xiaotianshi采纳,获得10
21秒前
22秒前
zzz发布了新的文献求助10
23秒前
456发布了新的文献求助20
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135127
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775305
捐赠科研通 2441924
什么是DOI,文献DOI怎么找? 1298299
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600839