Limitations and Improvements of the Intelligent Driver Model (IDM)

计算机科学 实施 加速度 常微分方程 编码(集合论) 高级驾驶员辅助系统 模拟 微分方程 人工智能 数学 经典力学 物理 数学分析 集合(抽象数据类型) 程序设计语言
作者
Saleh Albeaik,Alexandre M. Bayen,Maria Teresa Chiri,Xiaoqian Gong,Amaury Hayat,Nicolas Kardous,Alexander Keimer,Sean T. McQuade,Benedetto Piccoli,Yiling You
出处
期刊:Siam Journal on Applied Dynamical Systems [Society for Industrial and Applied Mathematics]
卷期号:21 (3): 1862-1892 被引量:28
标识
DOI:10.1137/21m1406477
摘要

This contribution analyzes the widely used and well-known “intelligent driver model” (briefly IDM), which is a second-order car-following model governed by a system of ordinary differential equations. Although this model was intensively studied in recent years for properly capturing traffic phenomena and driver braking behavior, a rigorous study of the well-posedness has, to our knowledge, never been performed. First, it is shown that, for a specific class of initial data, the vehicles' velocities become negative or even diverge to (-\infty\) in finite time, both undesirable properties for a car-following model. Various modifications of the IDM are then proposed in order to avoid such ill-posedness. The theoretical remediation of the model, rather than post facto by ad hoc modification of code implementations, allows a more sound numerical implementation and preservation of the model features. Indeed, to avoid inconsistencies and ensure dynamics close to the one of the original model, one may need to inspect and clean large input data, which may result in practically impossible scenarios for large-scale simulations. Although well-posedness issues might only occur for specific initial data, this may happen frequently when different traffic scenarios are analyzed and especially in the presence of lane changing, on-ramps, and other network components, as it is the case for most commonly used microsimulators. On the other side, it is shown that well-posedness can be guaranteed by straight-forward improvements, such as those obtained by slightly changing the acceleration to prevent the velocity from becoming negative.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静柚子关注了科研通微信公众号
2秒前
科研通AI2S应助gaosci采纳,获得10
3秒前
萧寒完成签到,获得积分10
3秒前
万能图书馆应助哲别采纳,获得10
4秒前
4秒前
852应助Mine采纳,获得10
4秒前
impending发布了新的文献求助10
7秒前
10秒前
10秒前
冷静妙海完成签到 ,获得积分10
11秒前
13秒前
搞怪柏柳发布了新的文献求助10
15秒前
15秒前
16秒前
LX发布了新的文献求助10
16秒前
Mine发布了新的文献求助10
16秒前
古工楼发布了新的文献求助10
19秒前
Jodie发布了新的文献求助10
19秒前
20秒前
Jasper应助幸福台灯采纳,获得10
20秒前
22秒前
23秒前
科研废物完成签到 ,获得积分10
25秒前
25秒前
安静柚子发布了新的文献求助30
26秒前
寻道图强应助hfy采纳,获得30
27秒前
王凡渡发布了新的文献求助10
27秒前
28秒前
28秒前
28秒前
科研通AI6应助Jodie采纳,获得10
30秒前
lichanshen完成签到,获得积分10
31秒前
跳跃的萧完成签到,获得积分10
32秒前
HSY发布了新的文献求助10
33秒前
岁大爷发布了新的文献求助10
34秒前
复杂的薯片完成签到,获得积分10
35秒前
浮游应助鲜艳的雨安采纳,获得10
41秒前
顺gsp完成签到 ,获得积分10
42秒前
Orange应助安静绯采纳,获得10
44秒前
追寻的访文完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870