NMCMDA: neural multicategory MiRNA–disease association prediction

计算机科学 疾病 联想(心理学) 人工智能 卷积神经网络 图形 机器学习 编码器 计算生物学 小RNA 人工神经网络 深度学习 模式识别(心理学) 支持向量机
作者
Jingru Wang,Jin Li,Kun Yue,Li Wang,Yuyun Ma,Qing Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
被引量:4
标识
DOI:10.1093/bib/bbab074
摘要

There is growing evidence showing that the dysregulations of miRNAs cause diseases through various kinds of the underlying mechanism. Thus, predicting the multiple-category associations between microRNAs (miRNAs) and diseases plays an important role in investigating the roles of miRNAs in diseases. Moreover, in contrast with traditional biological experiments which are time-consuming and expensive, computational approaches for the prediction of multicategory miRNA-disease associations are time-saving and cost-effective that are highly desired for us.We present a novel data-driven end-to-end learning-based method of neural multiple-category miRNA-disease association prediction (NMCMDA) for predicting multiple-category miRNA-disease associations. The NMCMDA has two main components: (i) encoder operates directly on the miRNA-disease heterogeneous network and leverages Graph Neural Network to learn miRNA and disease latent representations, respectively. (ii) Decoder yields miRNA-disease association scores with the learned latent representations as input. Various kinds of encoders and decoders are proposed for NMCMDA. Finally, the NMCMDA with the encoder of Relational Graph Convolutional Network and the neural multirelational decoder (NMR-RGCN) achieves the best prediction performance. We compared the NMCMDA with other baselines on three experimental datasets. The experimental results show that the NMR-RGCN is significantly superior to the state-of-the-art method TDRC in terms of Top-1 precision, Top-1 Recall, and Top-1 F1. Additionally, case studies are provided for two high-risk human diseases (namely, breast cancer and lung cancer) and we also provide the prediction and validation of top-10 miRNA-disease-category associations based on all known data of HMDD v3.2, which further validate the effectiveness and feasibility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极老黑发布了新的文献求助10
1秒前
柳叶完成签到,获得积分10
2秒前
李爱国应助绿波电龙采纳,获得10
5秒前
6秒前
无辜一一应助知来者采纳,获得10
6秒前
欧文文完成签到,获得积分10
6秒前
丘比特应助偷乐采纳,获得10
8秒前
科研通AI5应助HUAJIAO采纳,获得10
10秒前
bkagyin应助hh采纳,获得10
10秒前
科研通AI2S应助懵了采纳,获得10
12秒前
MrH完成签到,获得积分10
13秒前
25秒前
26秒前
黑大帅完成签到,获得积分10
27秒前
30秒前
lmj发布了新的文献求助10
31秒前
聪慧的凝海完成签到 ,获得积分0
32秒前
33秒前
Francis发布了新的文献求助10
36秒前
现代的板栗完成签到 ,获得积分10
38秒前
123发布了新的文献求助10
39秒前
41秒前
研友_Ze0vBn完成签到,获得积分10
42秒前
苏东方完成签到,获得积分10
43秒前
Hello应助123采纳,获得10
44秒前
米兰达完成签到 ,获得积分0
44秒前
Francis完成签到,获得积分10
45秒前
shijin完成签到,获得积分10
45秒前
大个应助ismm2002采纳,获得10
45秒前
迷雾围城完成签到 ,获得积分20
49秒前
50秒前
50秒前
小凉完成签到 ,获得积分10
50秒前
知来者完成签到,获得积分10
52秒前
53秒前
偷乐发布了新的文献求助10
55秒前
绿波电龙发布了新的文献求助10
55秒前
GUAGUA发布了新的文献求助10
57秒前
59秒前
踏实的洋葱完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774446
求助须知:如何正确求助?哪些是违规求助? 3320164
关于积分的说明 10198787
捐赠科研通 3034832
什么是DOI,文献DOI怎么找? 1665231
邀请新用户注册赠送积分活动 796703
科研通“疑难数据库(出版商)”最低求助积分说明 757558