NMCMDA: neural multicategory MiRNA–disease association prediction

计算机科学 疾病 联想(心理学) 人工智能 卷积神经网络 图形 机器学习 编码器 计算生物学 小RNA 人工神经网络 深度学习 模式识别(心理学) 支持向量机
作者
Jingru Wang,Jin Li,Kun Yue,Li Wang,Yuyun Ma,Qing Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
被引量:4
标识
DOI:10.1093/bib/bbab074
摘要

There is growing evidence showing that the dysregulations of miRNAs cause diseases through various kinds of the underlying mechanism. Thus, predicting the multiple-category associations between microRNAs (miRNAs) and diseases plays an important role in investigating the roles of miRNAs in diseases. Moreover, in contrast with traditional biological experiments which are time-consuming and expensive, computational approaches for the prediction of multicategory miRNA-disease associations are time-saving and cost-effective that are highly desired for us.We present a novel data-driven end-to-end learning-based method of neural multiple-category miRNA-disease association prediction (NMCMDA) for predicting multiple-category miRNA-disease associations. The NMCMDA has two main components: (i) encoder operates directly on the miRNA-disease heterogeneous network and leverages Graph Neural Network to learn miRNA and disease latent representations, respectively. (ii) Decoder yields miRNA-disease association scores with the learned latent representations as input. Various kinds of encoders and decoders are proposed for NMCMDA. Finally, the NMCMDA with the encoder of Relational Graph Convolutional Network and the neural multirelational decoder (NMR-RGCN) achieves the best prediction performance. We compared the NMCMDA with other baselines on three experimental datasets. The experimental results show that the NMR-RGCN is significantly superior to the state-of-the-art method TDRC in terms of Top-1 precision, Top-1 Recall, and Top-1 F1. Additionally, case studies are provided for two high-risk human diseases (namely, breast cancer and lung cancer) and we also provide the prediction and validation of top-10 miRNA-disease-category associations based on all known data of HMDD v3.2, which further validate the effectiveness and feasibility of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
顾化蛹发布了新的文献求助10
2秒前
3秒前
科研通AI5应助胡图图啦啦采纳,获得10
3秒前
3秒前
健忘的钢铁侠完成签到,获得积分10
4秒前
5秒前
5秒前
纯真水蓉发布了新的文献求助10
5秒前
5秒前
科研通AI5应助duizhang采纳,获得10
5秒前
顶顶顶完成签到,获得积分20
5秒前
一颗馒头发布了新的文献求助30
6秒前
大草莓完成签到,获得积分10
6秒前
逃跑计划完成签到,获得积分10
6秒前
好心情发布了新的文献求助10
7秒前
7秒前
7秒前
dxurp发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
shz8012发布了新的文献求助10
12秒前
喜悦落雁完成签到 ,获得积分10
12秒前
故意的书本完成签到 ,获得积分10
12秒前
ChenXinde完成签到,获得积分10
13秒前
希望天下0贩的0应助wh1t3zZ采纳,获得10
13秒前
SciGPT应助BINGOFAN采纳,获得10
14秒前
14秒前
默欢完成签到,获得积分10
14秒前
想读博的小羊完成签到,获得积分20
15秒前
15秒前
16秒前
深情安青应助Cecilia采纳,获得10
16秒前
sss发布了新的文献求助10
17秒前
纯真水蓉完成签到,获得积分10
17秒前
烟花应助昊xx采纳,获得10
17秒前
18秒前
思源应助虎帅采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559210
求助须知:如何正确求助?哪些是违规求助? 3133831
关于积分的说明 9404212
捐赠科研通 2834006
什么是DOI,文献DOI怎么找? 1557743
邀请新用户注册赠送积分活动 727651
科研通“疑难数据库(出版商)”最低求助积分说明 716383