Identifying Protein Complexes From Protein-Protein Interaction Networks Based on Fuzzy Clustering and GO Semantic Information

计算机科学 聚类分析 模糊聚类 数据挖掘 模糊逻辑 鉴定(生物学) 语义相似性 人工智能 机器学习 理论计算机科学 生物 植物
作者
Xiangyu Pan,Lun Hu,Pengwei Hu,Zhu‐Hong You
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2882-2893 被引量:22
标识
DOI:10.1109/tcbb.2021.3095947
摘要

Protein complexes are of great significance to provide valuable insights into the mechanisms of biological processes of proteins. A variety of computational algorithms have thus been proposed to identify protein complexes in a protein-protein interaction network. However, few of them can perform their tasks by taking into account both network topology and protein attribute information in a unified fuzzy-based clustering framework. Since proteins in the same complex are similar in terms of their attribute information and the consideration of fuzzy clustering can also make it possible for us to identify overlapping complexes, we target to propose such a novel fuzzy-based clustering framework, namely FCAN-PCI, for an improved identification accuracy. To do so, the semantic similarity between the attribute information of proteins is calculated and we then integrate it into a well-established fuzzy clustering model together with the network topology. After that, a momentum method is adopted to accelerate the clustering procedure. FCAN-PCI finally applies a heuristical search strategy to identify overlapping protein complexes. A series of extensive experiments have been conducted to evaluate the performance of FCAN-PCI by comparing it with state-of-the-art identification algorithms and the results demonstrate the promising performance of FCAN-PCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助柒柒37采纳,获得10
刚刚
刚刚
1秒前
zzer完成签到,获得积分10
1秒前
顺心紫翠完成签到,获得积分10
1秒前
VDC关闭了VDC文献求助
2秒前
2秒前
angew2000完成签到,获得积分10
3秒前
在水一方应助zhangshuo123采纳,获得10
3秒前
4秒前
teamguichu发布了新的文献求助10
4秒前
康zai完成签到,获得积分10
4秒前
5秒前
不配.应助小卢同学采纳,获得10
5秒前
5秒前
隐形曼青应助l六分之一采纳,获得10
6秒前
6秒前
JHL完成签到,获得积分10
6秒前
NiLou发布了新的文献求助10
7秒前
研友_VZG7GZ应助诉酒采纳,获得10
7秒前
Cocoa发布了新的文献求助30
7秒前
7秒前
Trost完成签到,获得积分10
8秒前
雪白问兰应助li采纳,获得10
8秒前
建丰完成签到,获得积分10
9秒前
9秒前
最好完成签到,获得积分10
9秒前
10秒前
10秒前
oi发布了新的文献求助30
10秒前
善学以致用应助小熊采纳,获得10
11秒前
julie发布了新的文献求助20
11秒前
11秒前
11秒前
12秒前
12秒前
西贝完成签到,获得积分10
14秒前
14秒前
康zai发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152571
求助须知:如何正确求助?哪些是违规求助? 2803797
关于积分的说明 7855643
捐赠科研通 2461450
什么是DOI,文献DOI怎么找? 1310300
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782