亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying Protein Complexes From Protein-Protein Interaction Networks Based on Fuzzy Clustering and GO Semantic Information

计算机科学 聚类分析 模糊聚类 数据挖掘 模糊逻辑 鉴定(生物学) 语义相似性 人工智能 机器学习 理论计算机科学 生物 植物
作者
Xiangyu Pan,Lun Hu,Pengwei Hu,Zhu‐Hong You
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2882-2893 被引量:22
标识
DOI:10.1109/tcbb.2021.3095947
摘要

Protein complexes are of great significance to provide valuable insights into the mechanisms of biological processes of proteins. A variety of computational algorithms have thus been proposed to identify protein complexes in a protein-protein interaction network. However, few of them can perform their tasks by taking into account both network topology and protein attribute information in a unified fuzzy-based clustering framework. Since proteins in the same complex are similar in terms of their attribute information and the consideration of fuzzy clustering can also make it possible for us to identify overlapping complexes, we target to propose such a novel fuzzy-based clustering framework, namely FCAN-PCI, for an improved identification accuracy. To do so, the semantic similarity between the attribute information of proteins is calculated and we then integrate it into a well-established fuzzy clustering model together with the network topology. After that, a momentum method is adopted to accelerate the clustering procedure. FCAN-PCI finally applies a heuristical search strategy to identify overlapping protein complexes. A series of extensive experiments have been conducted to evaluate the performance of FCAN-PCI by comparing it with state-of-the-art identification algorithms and the results demonstrate the promising performance of FCAN-PCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
李健应助堕落的飞猪采纳,获得10
17秒前
19秒前
pure123完成签到,获得积分10
19秒前
wenliu完成签到,获得积分10
19秒前
普通用户30号完成签到 ,获得积分10
21秒前
wenliu发布了新的文献求助10
22秒前
24秒前
38秒前
44秒前
54秒前
55秒前
56秒前
dtsgydbd发布了新的文献求助10
59秒前
饼子发布了新的文献求助10
1分钟前
唐泽雪穗发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
wrl2023完成签到,获得积分10
1分钟前
魏佳奇发布了新的文献求助10
1分钟前
赘婿应助dtsgydbd采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得60
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
tuanheqi应助科研通管家采纳,获得150
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
从容芮应助科研通管家采纳,获得50
1分钟前
cc完成签到,获得积分10
1分钟前
334niubi666完成签到 ,获得积分10
1分钟前
丘比特应助魏佳奇采纳,获得10
1分钟前
1分钟前
2分钟前
Nancy0818完成签到 ,获得积分10
2分钟前
脑洞疼应助槑槑采纳,获得10
2分钟前
2分钟前
下文献的蜉蝣完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186254
求助须知:如何正确求助?哪些是违规求助? 4371519
关于积分的说明 13612286
捐赠科研通 4223980
什么是DOI,文献DOI怎么找? 2316753
邀请新用户注册赠送积分活动 1315380
关于科研通互助平台的介绍 1264495