Cervical Cancer Metastasis and Recurrence Risk Prediction Based on Deep Convolutional Neural Network

计算机科学 转移 卷积神经网络 随机森林 预处理器 人工智能 规范化(社会学) 深度学习 医学 癌症 模式识别(心理学) 内科学 人类学 社会学
作者
Zixuan Ye,Yunxiang Zhang,Yuebin Liang,Jidong Lang,Xiaoli Zhang,Guoliang Zang,Dawei Yuan,Geng Tian,Mansheng Xiao,Jialiang Yang
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:17 (2): 164-173 被引量:26
标识
DOI:10.2174/1574893616666210708143556
摘要

Background: Evaluating the risk of metastasis and recurrence of a cervical cancer patient is critical for appropriate adjuvant therapy. However, current risk assessment models usually involve the testing of tens to thousands of genes from patients’ tissue samples, which is expensive and timeconsuming. Therefore, computer-aided diagnosis and prognosis prediction based on Hematoxylin and Eosin (H&E) pathological images have received much attention recently. Objective: The prognosis of whether patients will have metastasis and recurrence can support accurate treatment for patients in advance and help reduce patient loss. It is also important for guiding treatment after surgery to be able to quickly and accurately predict the risk of metastasis and recurrence of a cervical cancer patient. Method: To address this problem, we propose a hybrid method. Transfer learning is used to extract features, and it is combined with traditional machine learning in order to analyze and determine whether patients have the risks of metastasis and recurrence. First, the proposed model retrieved relevant patches using a color-based method from H&E pathological images, which were then subjected to image preprocessing steps such as image normalization and color homogenization. Based on the labeled patched images, the Xception model with good classification performance was selected, and deep features of patched pathological images were automatically extracted with transfer learning. After that, the extracted features were combined to train a random forest model to predict the label of a new patched image. Finally, a majority voting method was developed to predict the metastasis and recurrence risk of a patient based on the predictions of patched images from the whole-slide H&E image. Results: In our experiment, the proposed model yielded an area under the receiver operating characteristic curve of 0.82 for the whole-slide image. The experimental results showed that the high-level features extracted by the deep convolutional neural network from the whole-slide image can be used to predict the risk of recurrence and metastasis after surgical resection and help identify patients who might receive additional benefit from adjuvant therapy. Conclusion: This paper explored the feasibility of predicting the risk of metastasis and recurrence from cervical cancer whole slide H&E images through deep learning and random forest methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
国色不染尘完成签到,获得积分10
刚刚
1秒前
陈影发布了新的文献求助10
2秒前
2秒前
黄姗姗发布了新的文献求助10
3秒前
苗亦巧完成签到,获得积分10
3秒前
peanuttt发布了新的文献求助10
3秒前
温暖灵波完成签到 ,获得积分10
4秒前
活力成败完成签到,获得积分10
4秒前
yunqing发布了新的文献求助10
4秒前
5秒前
123hu完成签到,获得积分20
5秒前
5秒前
今后应助mirror采纳,获得10
7秒前
开心的访云完成签到,获得积分10
8秒前
发篇Sci不过分吧完成签到,获得积分20
8秒前
kook发布了新的文献求助10
10秒前
10秒前
CHN151发布了新的文献求助10
11秒前
wjy关闭了wjy文献求助
11秒前
orixero应助你没放假采纳,获得10
11秒前
斯文无敌完成签到,获得积分10
13秒前
赘婿应助balabala采纳,获得10
15秒前
可爱藏今发布了新的文献求助10
15秒前
JamesPei应助沙非娅采纳,获得10
16秒前
16秒前
李健的小迷弟应助小刘采纳,获得10
17秒前
18秒前
18秒前
18秒前
上官若男应助陈影采纳,获得10
19秒前
19秒前
搜集达人应助坎坎坷坷采纳,获得10
19秒前
yunqing完成签到,获得积分20
21秒前
李健的小迷弟应助张112233采纳,获得10
21秒前
VeterV发布了新的文献求助10
21秒前
21秒前
22秒前
赘婿应助thl采纳,获得10
23秒前
烟花应助wave采纳,获得10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756737
求助须知:如何正确求助?哪些是违规求助? 3300155
关于积分的说明 10112592
捐赠科研通 3014665
什么是DOI,文献DOI怎么找? 1655622
邀请新用户注册赠送积分活动 790048
科研通“疑难数据库(出版商)”最低求助积分说明 753552