Review and Comparative Analysis of Machine Learning-based Predictors for Predicting and Analyzing Anti-angiogenic Peptides

可解释性 鉴定(生物学) 优势和劣势 计算生物学 机器学习 人工智能 计算机科学 医学 数据科学 生物信息学 生物 药物发现 心理学 植物 社会心理学
作者
Phasit Charoenkwan,Wararat Chiangjong,Md Mehedi Hasan,Chanin Nantasenamat,Watshara Shoombuatong
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:29 (5): 849-864 被引量:9
标识
DOI:10.2174/0929867328666210810145806
摘要

Cancer is one of the leading causes of death worldwide and the underlying angiogenesis represents one of the hallmarks of cancer. Efforts are already under way for the discovery of anti-angiogenic peptides (AAPs) as a promising therapeutic route, which tackle the formation of new blood vessels. As such, the identification of AAPs constitutes a viable path for understanding their mechanistic properties pertinent for the discovery of new anti-cancer drugs. In spite of the abundance of peptide sequences in public databases, experimental efforts in the identification of anti-angiogenic peptides have progressed very slowly owing to high expenditures and laborious nature. Owing to its inherent ability to make sense of large volumes of data, machine learning (ML) represents a lucrative technique that can be harnessed for peptide-based drug discovery. In this review, we conducted a comprehensive and comparative analysis of ML-based AAP predictors in terms of their employed feature descriptors, ML algorithms, cross-validation methods and prediction performance. Moreover, the common framework of these AAP predictors and their inherent weaknesses are also discussed. Particularly, we explore future perspectives for improving the prediction accuracy and model interpretability, which represent an interesting avenue for overcoming some of the inherent weaknesses of existing AAP predictors. We anticipate that this review would assist researchers in the rapid screening and identification of promising AAPs for clinical use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
heehee发布了新的文献求助10
1秒前
研友_VZG7GZ应助聪明的二休采纳,获得10
1秒前
远山有灯完成签到,获得积分10
1秒前
彪壮的煎蛋完成签到,获得积分10
2秒前
2秒前
2秒前
wjy完成签到,获得积分10
2秒前
希望天下0贩的0应助青云采纳,获得10
2秒前
梵凡发布了新的文献求助10
3秒前
嘟嘟杜发布了新的文献求助10
3秒前
4秒前
4秒前
在水一方应助顺利芹菜采纳,获得10
4秒前
4秒前
花花发布了新的文献求助10
5秒前
5秒前
5秒前
Neol完成签到,获得积分20
5秒前
陈哈哈完成签到,获得积分10
5秒前
111关闭了111文献求助
6秒前
cruise完成签到,获得积分10
6秒前
晚意完成签到,获得积分20
7秒前
是真名士自风刘女士完成签到,获得积分10
7秒前
ChiariRay发布了新的文献求助10
8秒前
511发布了新的文献求助10
8秒前
9秒前
wjq发布了新的文献求助10
9秒前
田様应助生而狂野天逸采纳,获得10
9秒前
田様应助ritakashi采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
大气靳发布了新的文献求助10
10秒前
10秒前
如意蓉发布了新的文献求助10
10秒前
Neol发布了新的文献求助30
11秒前
11秒前
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425