Review and Comparative Analysis of Machine Learning-based Predictors for Predicting and Analyzing Anti-angiogenic Peptides

可解释性 鉴定(生物学) 优势和劣势 计算生物学 机器学习 人工智能 计算机科学 医学 数据科学 生物信息学 生物 药物发现 心理学 社会心理学 植物
作者
Phasit Charoenkwan,Wararat Chiangjong,Md Mehedi Hasan,Chanin Nantasenamat,Watshara Shoombuatong
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:29 (5): 849-864 被引量:9
标识
DOI:10.2174/0929867328666210810145806
摘要

Cancer is one of the leading causes of death worldwide and the underlying angiogenesis represents one of the hallmarks of cancer. Efforts are already under way for the discovery of anti-angiogenic peptides (AAPs) as a promising therapeutic route, which tackle the formation of new blood vessels. As such, the identification of AAPs constitutes a viable path for understanding their mechanistic properties pertinent for the discovery of new anti-cancer drugs. In spite of the abundance of peptide sequences in public databases, experimental efforts in the identification of anti-angiogenic peptides have progressed very slowly owing to high expenditures and laborious nature. Owing to its inherent ability to make sense of large volumes of data, machine learning (ML) represents a lucrative technique that can be harnessed for peptide-based drug discovery. In this review, we conducted a comprehensive and comparative analysis of ML-based AAP predictors in terms of their employed feature descriptors, ML algorithms, cross-validation methods and prediction performance. Moreover, the common framework of these AAP predictors and their inherent weaknesses are also discussed. Particularly, we explore future perspectives for improving the prediction accuracy and model interpretability, which represent an interesting avenue for overcoming some of the inherent weaknesses of existing AAP predictors. We anticipate that this review would assist researchers in the rapid screening and identification of promising AAPs for clinical use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Belinda完成签到 ,获得积分10
刚刚
shiyu发布了新的文献求助10
2秒前
徐徐诱之发布了新的文献求助30
2秒前
3秒前
3秒前
Wang发布了新的文献求助10
3秒前
4秒前
4秒前
梁某完成签到,获得积分10
5秒前
5秒前
6秒前
今后应助十三采纳,获得10
7秒前
7秒前
领导范儿应助shiyu采纳,获得10
7秒前
7秒前
一介书生完成签到,获得积分10
8秒前
Hello应助小牛马阿欢采纳,获得10
9秒前
万能图书馆应助标致电源采纳,获得10
9秒前
聆(*^_^*)发布了新的文献求助50
9秒前
梦溪发布了新的文献求助10
10秒前
10秒前
11秒前
山海之间完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
flame发布了新的文献求助10
13秒前
怕黑不惜发布了新的文献求助50
15秒前
所所应助科研通管家采纳,获得10
16秒前
科研通AI5应助强健的蚂蚁采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
木木应助科研通管家采纳,获得10
16秒前
Lc应助科研通管家采纳,获得10
16秒前
Ricey应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
赘婿应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993711
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265414
捐赠科研通 3274169
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712