Social Determinants in Machine Learning Cardiovascular Disease Prediction Models: A Systematic Review

疾病 梅德林 医学 计算机科学 机器学习 人工智能 内科学 生物 生物化学
作者
Yuan Zhao,Erica P. Wood,Nicholas Mirin,Stephanie Cook,Rumi Chunara
出处
期刊:American Journal of Preventive Medicine [Elsevier BV]
卷期号:61 (4): 596-605 被引量:46
标识
DOI:10.1016/j.amepre.2021.04.016
摘要

Cardiovascular disease is the leading cause of death worldwide, and cardiovascular disease burden is increasing in low-resource settings and for lower socioeconomic groups. Machine learning algorithms are being developed rapidly and incorporated into clinical practice for cardiovascular disease prediction and treatment decisions. Significant opportunities for reducing death and disability from cardiovascular disease worldwide lie with accounting for the social determinants of cardiovascular outcomes. This study reviews how social determinants of health are being included in machine learning algorithms to inform best practices for the development of algorithms that account for social determinants.A systematic review using 5 databases was conducted in 2020. English language articles from any location published from inception to April 10, 2020, which reported on the use of machine learning for cardiovascular disease prediction that incorporated social determinants of health, were included.Most studies that compared machine learning algorithms and regression showed increased performance of machine learning, and most studies that compared performance with or without social determinants of health showed increased performance with them. The most frequently included social determinants of health variables were gender, race/ethnicity, marital status, occupation, and income. Studies were largely from North America, Europe, and China, limiting the diversity of the included populations and variance in social determinants of health.Given their flexibility, machine learning approaches may provide an opportunity to incorporate the complex nature of social determinants of health. The limited variety of sources and data in the reviewed studies emphasize that there is an opportunity to include more social determinants of health variables, especially environmental ones, that are known to impact cardiovascular disease risk and that recording such data in electronic databases will enable their use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助科研通管家采纳,获得10
刚刚
axiba应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Candice应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
潇洒的元蝶完成签到,获得积分10
2秒前
3秒前
小邱完成签到 ,获得积分10
4秒前
4秒前
5秒前
上官雨时发布了新的文献求助10
5秒前
寒江雪完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助柒月小鱼采纳,获得10
6秒前
6秒前
17716504054发布了新的文献求助10
7秒前
10秒前
深情安青应助张航采纳,获得10
10秒前
giannis发布了新的文献求助30
10秒前
大模型应助YZ采纳,获得10
11秒前
12秒前
14秒前
16秒前
善始善终完成签到,获得积分10
17秒前
小枣发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672918
求助须知:如何正确求助?哪些是违规求助? 3228951
关于积分的说明 9782803
捐赠科研通 2939332
什么是DOI,文献DOI怎么找? 1610917
邀请新用户注册赠送积分活动 760758
科研通“疑难数据库(出版商)”最低求助积分说明 736235