Experimental discovery of structure–property relationships in ferroelectric materials via active learning

铁电性 压电响应力显微镜 磁滞 计算机科学 材料科学 人工智能 电介质 拓扑(电路) 纳米技术 物理 光电子学 凝聚态物理 工程类 电气工程
作者
Yongtao Liu,Kyle P. Kelley,Rama K. Vasudevan,Hiroshi Funakubo,Maxim Ziatdinov,Sergei V. Kalinin
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (4): 341-350 被引量:48
标识
DOI:10.1038/s42256-022-00460-0
摘要

Emergent functionalities of structural and topological defects in ferroelectric materials underpin an extremely broad spectrum of applications ranging from domain wall electronics to high dielectric and electromechanical responses. Many of these functionalities have been discovered and quantified via local scanning probe microscopy methods. However, the search has until now been based on either trial and error, or using auxiliary information such as the topography or domain wall structure to identify potential objects of interest on the basis of the intuition of operator or pre-existing hypotheses, with subsequent manual exploration. Here we report the development and implementation of a machine learning framework that actively discovers relationships between local domain structure and polarization-switching characteristics in ferroelectric materials encoded in the hysteresis loop. The hysteresis loops and their scalar descriptors such as nucleation bias, coercive bias and the hysteresis loop area (or more complex functionals of hysteresis loop shape) and corresponding uncertainties are used to guide the discovery of these relationships via automated piezoresponse force microscopy and spectroscopy experiments. As such, this approach combines the power of machine learning methods to learn the correlative relationships between high-dimensional data, as well as human-based physics insights encoded into the acquisition function. For ferroelectric materials, this automated workflow demonstrates that the discovery path and sampling points of on- and off-field hysteresis loops are largely different, indicating that on- and off-field hysteresis loops are dominated by different mechanisms. The proposed approach is universal and can be applied to a broad range of modern imaging and spectroscopy methods ranging from other scanning probe microscopy modalities to electron microscopy and chemical imaging. An automated workflow for scanning probe microscopy, steered by an active learning framework, can efficiently explore relationships between local domain structure and physical properties. Such a capability is demonstrated in a piezoresponse force microscopy experiment to guide measurements of ferroelectric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2鱼发布了新的文献求助10
1秒前
SYLH应助畅快的谷梦采纳,获得10
2秒前
mingjie发布了新的文献求助10
2秒前
Akim应助克里斯就是逊啦采纳,获得10
2秒前
越幸运完成签到 ,获得积分10
3秒前
young完成签到 ,获得积分10
3秒前
天天快乐应助成就的烧鹅采纳,获得10
4秒前
cora发布了新的文献求助10
4秒前
诚心的不斜完成签到,获得积分10
5秒前
bono完成签到 ,获得积分10
5秒前
5秒前
6秒前
又要起名字关注了科研通微信公众号
7秒前
可爱的函函应助su采纳,获得10
7秒前
8秒前
澳澳完成签到,获得积分10
9秒前
9秒前
善学以致用应助纯真抽屉采纳,获得10
10秒前
10秒前
笑笑发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
Hello应助cora采纳,获得10
13秒前
汉唐精彩完成签到,获得积分10
14秒前
14秒前
15秒前
田茂青完成签到,获得积分10
15秒前
damian发布了新的文献求助30
15秒前
15秒前
聪明芒果完成签到,获得积分10
15秒前
Vvvvvvv应助虫二先生采纳,获得10
15秒前
西大研究生完成签到 ,获得积分10
15秒前
16秒前
16秒前
呆呆完成签到,获得积分10
16秒前
左一酱完成签到 ,获得积分10
17秒前
平淡南霜发布了新的文献求助10
17秒前
Sweet关注了科研通微信公众号
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794