Experimental discovery of structure–property relationships in ferroelectric materials via active learning

铁电性 压电响应力显微镜 磁滞 计算机科学 材料科学 人工智能 电介质 拓扑(电路) 纳米技术 物理 光电子学 凝聚态物理 工程类 电气工程
作者
Yongtao Liu,Kyle P. Kelley,Rama K. Vasudevan,Hiroshi Funakubo,Maxim Ziatdinov,Sergei V. Kalinin
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (4): 341-350 被引量:48
标识
DOI:10.1038/s42256-022-00460-0
摘要

Emergent functionalities of structural and topological defects in ferroelectric materials underpin an extremely broad spectrum of applications ranging from domain wall electronics to high dielectric and electromechanical responses. Many of these functionalities have been discovered and quantified via local scanning probe microscopy methods. However, the search has until now been based on either trial and error, or using auxiliary information such as the topography or domain wall structure to identify potential objects of interest on the basis of the intuition of operator or pre-existing hypotheses, with subsequent manual exploration. Here we report the development and implementation of a machine learning framework that actively discovers relationships between local domain structure and polarization-switching characteristics in ferroelectric materials encoded in the hysteresis loop. The hysteresis loops and their scalar descriptors such as nucleation bias, coercive bias and the hysteresis loop area (or more complex functionals of hysteresis loop shape) and corresponding uncertainties are used to guide the discovery of these relationships via automated piezoresponse force microscopy and spectroscopy experiments. As such, this approach combines the power of machine learning methods to learn the correlative relationships between high-dimensional data, as well as human-based physics insights encoded into the acquisition function. For ferroelectric materials, this automated workflow demonstrates that the discovery path and sampling points of on- and off-field hysteresis loops are largely different, indicating that on- and off-field hysteresis loops are dominated by different mechanisms. The proposed approach is universal and can be applied to a broad range of modern imaging and spectroscopy methods ranging from other scanning probe microscopy modalities to electron microscopy and chemical imaging. An automated workflow for scanning probe microscopy, steered by an active learning framework, can efficiently explore relationships between local domain structure and physical properties. Such a capability is demonstrated in a piezoresponse force microscopy experiment to guide measurements of ferroelectric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹅鹅关注了科研通微信公众号
1秒前
Simon发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
akjsi发布了新的文献求助10
2秒前
称心璎发布了新的文献求助10
3秒前
超酷的柠檬完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
慕青应助toosweet采纳,获得10
5秒前
贪玩丸子完成签到,获得积分10
6秒前
多肉葡萄完成签到,获得积分20
7秒前
gentleripper发布了新的文献求助10
7秒前
7秒前
希望天下0贩的0应助堇笙vv采纳,获得10
7秒前
8秒前
王翎力发布了新的文献求助10
8秒前
魔女完成签到,获得积分10
8秒前
凡仔发布了新的文献求助10
8秒前
zzdd发布了新的文献求助10
9秒前
9秒前
Pilule发布了新的文献求助10
10秒前
Jasper应助sjc采纳,获得10
10秒前
Simon完成签到,获得积分10
11秒前
xiaoqi完成签到,获得积分20
11秒前
矫仁瑞完成签到,获得积分20
11秒前
灭亡发布了新的文献求助10
12秒前
从容道罡关注了科研通微信公众号
12秒前
12秒前
13秒前
aldehyde发布了新的文献求助10
13秒前
科研通AI2S应助Sherry99采纳,获得10
14秒前
14秒前
15秒前
Xxing完成签到,获得积分10
16秒前
16秒前
aliposome完成签到,获得积分10
16秒前
mingjie发布了新的文献求助30
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145145
求助须知:如何正确求助?哪些是违规求助? 2796529
关于积分的说明 7820187
捐赠科研通 2452829
什么是DOI,文献DOI怎么找? 1305278
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449