Experimental discovery of structure–property relationships in ferroelectric materials via active learning

铁电性 压电响应力显微镜 磁滞 计算机科学 材料科学 人工智能 电介质 拓扑(电路) 纳米技术 物理 光电子学 凝聚态物理 工程类 电气工程
作者
Yongtao Liu,Kyle P. Kelley,Rama K. Vasudevan,Hiroshi Funakubo,Maxim Ziatdinov,Sergei V. Kalinin
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (4): 341-350 被引量:48
标识
DOI:10.1038/s42256-022-00460-0
摘要

Emergent functionalities of structural and topological defects in ferroelectric materials underpin an extremely broad spectrum of applications ranging from domain wall electronics to high dielectric and electromechanical responses. Many of these functionalities have been discovered and quantified via local scanning probe microscopy methods. However, the search has until now been based on either trial and error, or using auxiliary information such as the topography or domain wall structure to identify potential objects of interest on the basis of the intuition of operator or pre-existing hypotheses, with subsequent manual exploration. Here we report the development and implementation of a machine learning framework that actively discovers relationships between local domain structure and polarization-switching characteristics in ferroelectric materials encoded in the hysteresis loop. The hysteresis loops and their scalar descriptors such as nucleation bias, coercive bias and the hysteresis loop area (or more complex functionals of hysteresis loop shape) and corresponding uncertainties are used to guide the discovery of these relationships via automated piezoresponse force microscopy and spectroscopy experiments. As such, this approach combines the power of machine learning methods to learn the correlative relationships between high-dimensional data, as well as human-based physics insights encoded into the acquisition function. For ferroelectric materials, this automated workflow demonstrates that the discovery path and sampling points of on- and off-field hysteresis loops are largely different, indicating that on- and off-field hysteresis loops are dominated by different mechanisms. The proposed approach is universal and can be applied to a broad range of modern imaging and spectroscopy methods ranging from other scanning probe microscopy modalities to electron microscopy and chemical imaging. An automated workflow for scanning probe microscopy, steered by an active learning framework, can efficiently explore relationships between local domain structure and physical properties. Such a capability is demonstrated in a piezoresponse force microscopy experiment to guide measurements of ferroelectric materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Biofly526完成签到,获得积分10
刚刚
Lucas应助盒子采纳,获得10
1秒前
欣欣完成签到,获得积分10
1秒前
喜悦向日葵完成签到 ,获得积分10
2秒前
AHR发布了新的文献求助10
2秒前
诚心谷南发布了新的文献求助10
2秒前
香豆素完成签到 ,获得积分10
2秒前
犹豫怀亦完成签到,获得积分10
3秒前
燃燃完成签到 ,获得积分10
3秒前
佳佳完成签到,获得积分10
3秒前
5秒前
DDD完成签到,获得积分10
6秒前
6秒前
猪猪朱完成签到,获得积分20
6秒前
luoxijixian完成签到,获得积分10
7秒前
7秒前
追寻怜蕾发布了新的文献求助10
8秒前
楠楠完成签到,获得积分10
8秒前
昵称有敏感词应助李顺杰采纳,获得10
9秒前
昵称有敏感词应助李顺杰采纳,获得10
9秒前
9秒前
饭团关注了科研通微信公众号
9秒前
9秒前
乐观学姐发布了新的文献求助10
10秒前
tangpanpan完成签到,获得积分20
10秒前
踏实的涵阳完成签到,获得积分10
11秒前
chinaproteome完成签到,获得积分10
11秒前
好好好完成签到 ,获得积分10
11秒前
gehao完成签到,获得积分10
12秒前
bonnie发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
倒霉兔子完成签到,获得积分0
14秒前
CodeCraft应助瓜瓜采纳,获得10
14秒前
14秒前
chinaproteome发布了新的文献求助10
14秒前
大方的盼雁完成签到,获得积分10
15秒前
DJ发布了新的文献求助10
15秒前
sks完成签到,获得积分10
15秒前
张茜完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953707
求助须知:如何正确求助?哪些是违规求助? 3499536
关于积分的说明 11096135
捐赠科研通 3230090
什么是DOI,文献DOI怎么找? 1785865
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801479