A novel and efficient method for wood–leaf separation from terrestrial laser scanning point clouds at the forest plot level

点云 体积热力学 激光扫描 绘图(图形) 曲率 点(几何) 计算机科学 数学 遥感 环境科学 人工智能 激光器 地理 几何学 统计 物理 量子力学 光学
作者
Peng Wan,Jie Shao,Shuangna Jin,Tiejun Wang,Shengmei Yang,Guangjian Yan,Wuming Zhang
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:12 (12): 2473-2486 被引量:24
标识
DOI:10.1111/2041-210x.13715
摘要

Abstract With the increasing use of terrestrial laser scanning (TLS) technology in the field of forest ecology, a large number of studies have been carried out on the separation of wood and leaves based on TLS point cloud data. However, most wood–leaf separation methods adopt the point‐wise classification strategy, which is not efficient for processing large‐volume TLS datasets acquired at the forest plot level. In this study, we proposed a segment‐wise classification strategy to improve the efficiency of the wood–leaf separation from large‐volume TLS point cloud datasets collected at the forest plot. The proposed method first decomposes the point cloud into three parts based on the threshold values of its local curvature. Then, the first two parts with lower local curvatures were segmented respectively by a connected component labelling algorithm. Finally, the segmented point clouds were classified into wood or leaf segments according to the segment‐wise geometric features of each segment. We tested our method on both needleleaf and broadleaf forest plots in temperate and tropical forests. We also compared our method with two other state‐of‐the‐art wood–leaf separation methods, that is, the CANUPO and LeWoS. The results showed that our method was more than 10 times faster than the compared methods while maintaining comparable and even higher accuracy. Our study demonstrates that the segment‐wise classification strategy applies to the large‐volume TLS datasets and can greatly improve the efficiency of the classification. The proposed method is simple, fast and universally applicable to the TLS data from various tree species and forest types at the plot level, which may facilitate the adoption of TLS technology by forest ecologists in their studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biubiubiu发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
愚林2024发布了新的文献求助10
刚刚
爆米花应助rh1006采纳,获得10
刚刚
刚刚
jjj发布了新的文献求助1000
刚刚
Jason完成签到,获得积分10
1秒前
2秒前
2秒前
烟花应助阿斯顿撒大学采纳,获得10
4秒前
科研小菜发布了新的文献求助10
5秒前
jing发布了新的文献求助10
5秒前
5秒前
李健的粉丝团团长应助eve采纳,获得10
6秒前
YelloW完成签到,获得积分10
7秒前
wfy发布了新的文献求助10
7秒前
研友_Z1evNZ发布了新的文献求助10
7秒前
7秒前
7秒前
yyc关注了科研通微信公众号
7秒前
axiba发布了新的文献求助10
7秒前
远慕发布了新的文献求助10
8秒前
典雅的忆枫完成签到,获得积分10
8秒前
8秒前
往前走别回头完成签到,获得积分10
9秒前
9秒前
Vv发布了新的文献求助10
9秒前
9秒前
罗舒完成签到,获得积分10
10秒前
美味拖拉机完成签到,获得积分10
11秒前
11秒前
11秒前
33完成签到 ,获得积分10
12秒前
万物更始完成签到,获得积分10
12秒前
ly发布了新的文献求助10
12秒前
草上飞完成签到 ,获得积分10
14秒前
14秒前
顺顺黎黎完成签到,获得积分10
15秒前
完美世界应助xiao67er采纳,获得10
15秒前
zy发布了新的文献求助20
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406