A novel and efficient method for wood–leaf separation from terrestrial laser scanning point clouds at the forest plot level

点云 体积热力学 激光扫描 绘图(图形) 曲率 点(几何) 计算机科学 数学 遥感 环境科学 人工智能 激光器 地理 几何学 统计 物理 光学 量子力学
作者
Peng Wan,Jie Shao,Shuangna Jin,Tiejun Wang,Shengmei Yang,Guangjian Yan,Wuming Zhang
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:12 (12): 2473-2486 被引量:24
标识
DOI:10.1111/2041-210x.13715
摘要

Abstract With the increasing use of terrestrial laser scanning (TLS) technology in the field of forest ecology, a large number of studies have been carried out on the separation of wood and leaves based on TLS point cloud data. However, most wood–leaf separation methods adopt the point‐wise classification strategy, which is not efficient for processing large‐volume TLS datasets acquired at the forest plot level. In this study, we proposed a segment‐wise classification strategy to improve the efficiency of the wood–leaf separation from large‐volume TLS point cloud datasets collected at the forest plot. The proposed method first decomposes the point cloud into three parts based on the threshold values of its local curvature. Then, the first two parts with lower local curvatures were segmented respectively by a connected component labelling algorithm. Finally, the segmented point clouds were classified into wood or leaf segments according to the segment‐wise geometric features of each segment. We tested our method on both needleleaf and broadleaf forest plots in temperate and tropical forests. We also compared our method with two other state‐of‐the‐art wood–leaf separation methods, that is, the CANUPO and LeWoS. The results showed that our method was more than 10 times faster than the compared methods while maintaining comparable and even higher accuracy. Our study demonstrates that the segment‐wise classification strategy applies to the large‐volume TLS datasets and can greatly improve the efficiency of the classification. The proposed method is simple, fast and universally applicable to the TLS data from various tree species and forest types at the plot level, which may facilitate the adoption of TLS technology by forest ecologists in their studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Russell完成签到,获得积分10
1秒前
1秒前
1秒前
ltf发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
五十完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助30
4秒前
发呆夜师傅完成签到,获得积分10
4秒前
一个可爱的辰完成签到,获得积分10
5秒前
顾矜应助心海采纳,获得10
5秒前
6秒前
难过云朵发布了新的文献求助10
6秒前
6秒前
五十发布了新的文献求助10
6秒前
多金多金完成签到,获得积分10
7秒前
爱吃糖果的小象完成签到,获得积分10
7秒前
8秒前
8秒前
熊若宇发布了新的文献求助10
8秒前
9秒前
今后应助陈明健采纳,获得10
10秒前
解雨洁完成签到,获得积分10
10秒前
10秒前
www完成签到,获得积分10
11秒前
王俊完成签到,获得积分10
12秒前
天下无敌完成签到,获得积分10
12秒前
13秒前
呆萌初南发布了新的文献求助10
14秒前
14秒前
feifei发布了新的文献求助10
14秒前
14秒前
15秒前
小雨点Logan完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助30
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761669
求助须知:如何正确求助?哪些是违规求助? 5531072
关于积分的说明 15400289
捐赠科研通 4897942
什么是DOI,文献DOI怎么找? 2634588
邀请新用户注册赠送积分活动 1582751
关于科研通互助平台的介绍 1537985