氧化还原
化学
电化学
水溶液
反离子
无机化学
电子转移
流动电池
电解质
溶剂化
循环伏安法
溶剂
有机化学
离子
电极
物理化学
作者
Kritika Sharma,Shrihari Sankarasubramanian,Javier Parrondo,Vijay Ramani
标识
DOI:10.1073/pnas.2105889118
摘要
Organic and organometallic reactants in aqueous electrolytes, being composed of earth-abundant elements, are promising redox active candidates for cost-effective organic redox flow batteries (ORFBs). Various compounds of ferrocene and methyl viologen have been examined as promising redox actives for this application. Herein, we examined the influence of the electrolyte pH and the salt anion on model redox active organic cations, bis((3-trimethylammonio) propyl)- ferrocene dichloride (BTMAP-Fc) and bis(3-trimethylammonio) propyl viologen tetrachloride (BTMAP-Vi), which have exhibited excellent cycling stability and capacity retention at ≥1.00 M concentration [E. S. Beh, et al. ACS Energy Lett. 2, 639-644 (2017)]. We examined the solvation shell around BTMAP-Fc and BTMAP-Vi at acidic and neutral pH with SO42-, Cl-, and CH3SO3- counterions and elucidated their impact on cation diffusion coefficient, first electron transfer rate constant, and thereby the electrochemical Thiele modulus. The electrochemical Thiele modulus was found to be exponentially correlated with the solvent reorganizational energy (λ) in both neutral and acidic pH. Thus, λ is proposed as a universal descriptor and selection criteria for organic redox flow battery electrolyte compositions. In the specific case of the BTMAP-Fc/BTMAP-Vi ORFB, low pH electrolytes with methanesulfonate or chloride counterions were identified as offering the best balance of transport and kinetic requirements.
科研通智能强力驱动
Strongly Powered by AbleSci AI