油藏计算
量子隧道
计算机科学
维数之咒
能量(信号处理)
铁电性
材料科学
光电子学
计算机硬件
电介质
人工智能
物理
人工神经网络
量子力学
循环神经网络
作者
Jie Yu,Yang Li,Weiying Sun,Woyu Zhang,Zhaomeng Gao,Danian Dong,Zhibin Yu,Yulin Zhao,Jinru Lai,Qingting Ding,Qing Luo,Chunmeng Dou,Qingyun Zuo,Yuhang Zhao,Shoumian Chen,Rong Zou,Haoyu Chen,Qiwei Wang,Hangbing Lv,Xiaoxin Xu,Dashan Shang,Ming Liu
出处
期刊:Symposium on VLSI Technology
日期:2021-06-13
摘要
Reservoir computing (RC) can compute temporal data with low training cost. To enhance data processing capability, high dimensionality of reservoir is required, which poses a significant challenge on RC hardware implementation using Si-friendly devices. In this work, for the first time, we use ultra-thin (3.5 nm) ferroelectric tunneling junctions (FTJs) with transient depolarization property as physical nonlinear virtual nodes to address this challenge. By constructing an FTJ-based dynamic reservoir and combining it with RRAM-based binarized readout layer, the high energy efficiency (35 pJ), processing speed (500 ns), and recognition accuracy (92.3%) have been demonstrated for digital sequence classification.
科研通智能强力驱动
Strongly Powered by AbleSci AI