A Novel Framework for Rapid Detection of Damaged Buildings Using Pre-Event LiDAR Data and Shadow Change Information

影子(心理学) 事件(粒子物理) 计算机科学 激光雷达 遥感 环境科学 地质学 心理学 量子力学 物理 心理治疗师
作者
Ying Zhang,Matthew Roffey,Sylvain G. Leblanc
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (16): 3297-3297 被引量:4
标识
DOI:10.3390/rs13163297
摘要

After a major earthquake in a dense urban area, the spatial distribution of heavily damaged buildings is indicative of the impact of the event on public safety. Timely assessment of the locations of severely damaged buildings and their damage morphologies using remote sensing approaches is critical for search and rescue actions. Detection of damaged buildings that did not suffer collapse can be highly challenging from aerial or satellite optical imagery, especially those structures with height-reduction or inclination damage and apparently intact roofs. A key information cue can be provided by a comparison of predicted building shadows based on pre-event building models with shadow estimates extracted from post-event imagery. This paper addresses the detection of damaged buildings in dense urban areas using the information of building shadow changes based on shadow simulation, analysis, and image processing in order to improve real-time damage detection and analysis. A novel processing framework for the rapid detection of damaged buildings without collapse is presented, which includes (a) generation of building digital surface models (DSMs) from pre-event LiDAR data, (b) building shadow detection and extraction from imagery, (c) simulation of predicted building shadows utilizing building DSMs, and (d) detection and identification of shadow areas exhibiting significant pre- and post-event differences that can be attributed to building damage. The framework is demonstrated through two simulated case studies. The building damage types considered are those typically observed in earthquake events and include height-reduction, over-turn collapse, and inclination. Total collapse cases are not addressed as these are comparatively easy to be detected using simpler algorithms. Key issues are discussed including the attributes of essential information layers and sources of error influencing the accuracy of building damage detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称11发布了新的文献求助10
1秒前
Owen应助Huguizhou采纳,获得10
1秒前
韩涵完成签到 ,获得积分10
1秒前
充电宝应助2499297293采纳,获得10
1秒前
aich完成签到,获得积分10
1秒前
鲅鱼圈完成签到,获得积分10
2秒前
3秒前
一朵梅花完成签到,获得积分10
3秒前
咕噜仔完成签到,获得积分10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得30
4秒前
Hello应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
LewisAcid应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
香蕉诗蕊举报Llll求助涉嫌违规
5秒前
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
打发打发的发到付电费完成签到,获得积分10
5秒前
维奈克拉应助科研通管家采纳,获得20
5秒前
哈哈发布了新的文献求助10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342