A Novel Framework for Rapid Detection of Damaged Buildings Using Pre-Event LiDAR Data and Shadow Change Information

影子(心理学) 事件(粒子物理) 计算机科学 激光雷达 遥感 环境科学 地质学 心理学 量子力学 物理 心理治疗师
作者
Ying Zhang,Matthew Roffey,Sylvain G. Leblanc
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (16): 3297-3297 被引量:4
标识
DOI:10.3390/rs13163297
摘要

After a major earthquake in a dense urban area, the spatial distribution of heavily damaged buildings is indicative of the impact of the event on public safety. Timely assessment of the locations of severely damaged buildings and their damage morphologies using remote sensing approaches is critical for search and rescue actions. Detection of damaged buildings that did not suffer collapse can be highly challenging from aerial or satellite optical imagery, especially those structures with height-reduction or inclination damage and apparently intact roofs. A key information cue can be provided by a comparison of predicted building shadows based on pre-event building models with shadow estimates extracted from post-event imagery. This paper addresses the detection of damaged buildings in dense urban areas using the information of building shadow changes based on shadow simulation, analysis, and image processing in order to improve real-time damage detection and analysis. A novel processing framework for the rapid detection of damaged buildings without collapse is presented, which includes (a) generation of building digital surface models (DSMs) from pre-event LiDAR data, (b) building shadow detection and extraction from imagery, (c) simulation of predicted building shadows utilizing building DSMs, and (d) detection and identification of shadow areas exhibiting significant pre- and post-event differences that can be attributed to building damage. The framework is demonstrated through two simulated case studies. The building damage types considered are those typically observed in earthquake events and include height-reduction, over-turn collapse, and inclination. Total collapse cases are not addressed as these are comparatively easy to be detected using simpler algorithms. Key issues are discussed including the attributes of essential information layers and sources of error influencing the accuracy of building damage detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摆渡人完成签到,获得积分10
3秒前
可爱语芹完成签到 ,获得积分10
4秒前
Lina完成签到 ,获得积分10
10秒前
10秒前
科研通AI6应助hao采纳,获得10
12秒前
滴滴完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
15秒前
lenne完成签到,获得积分10
16秒前
花海完成签到,获得积分10
17秒前
半农应助饭饭采纳,获得10
22秒前
153266916完成签到 ,获得积分10
31秒前
高高的依白完成签到 ,获得积分10
45秒前
47秒前
xiaoxiaohai完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
54秒前
先锋完成签到 ,获得积分0
56秒前
单小芫完成签到 ,获得积分10
57秒前
JrPaleo101完成签到,获得积分10
1分钟前
胡可完成签到 ,获得积分10
1分钟前
1分钟前
黄淮科研小白龙完成签到 ,获得积分10
1分钟前
wintersss完成签到,获得积分10
1分钟前
hao完成签到,获得积分20
1分钟前
呼延坤完成签到 ,获得积分10
1分钟前
熊二完成签到,获得积分10
1分钟前
萤火虫完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
swordshine完成签到,获得积分0
1分钟前
ksl完成签到 ,获得积分10
1分钟前
Blitz完成签到,获得积分10
1分钟前
香蕉觅云应助tcheng采纳,获得10
1分钟前
1分钟前
松松完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Lny发布了新的文献求助10
1分钟前
龄仔仔完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
hao发布了新的文献求助10
2分钟前
叁月二完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539114
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566744
什么是DOI,文献DOI怎么找? 2503536
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1453020