A Novel Framework for Rapid Detection of Damaged Buildings Using Pre-Event LiDAR Data and Shadow Change Information

影子(心理学) 事件(粒子物理) 计算机科学 激光雷达 遥感 环境科学 地质学 心理学 量子力学 物理 心理治疗师
作者
Ying Zhang,Matthew Roffey,Sylvain G. Leblanc
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (16): 3297-3297 被引量:4
标识
DOI:10.3390/rs13163297
摘要

After a major earthquake in a dense urban area, the spatial distribution of heavily damaged buildings is indicative of the impact of the event on public safety. Timely assessment of the locations of severely damaged buildings and their damage morphologies using remote sensing approaches is critical for search and rescue actions. Detection of damaged buildings that did not suffer collapse can be highly challenging from aerial or satellite optical imagery, especially those structures with height-reduction or inclination damage and apparently intact roofs. A key information cue can be provided by a comparison of predicted building shadows based on pre-event building models with shadow estimates extracted from post-event imagery. This paper addresses the detection of damaged buildings in dense urban areas using the information of building shadow changes based on shadow simulation, analysis, and image processing in order to improve real-time damage detection and analysis. A novel processing framework for the rapid detection of damaged buildings without collapse is presented, which includes (a) generation of building digital surface models (DSMs) from pre-event LiDAR data, (b) building shadow detection and extraction from imagery, (c) simulation of predicted building shadows utilizing building DSMs, and (d) detection and identification of shadow areas exhibiting significant pre- and post-event differences that can be attributed to building damage. The framework is demonstrated through two simulated case studies. The building damage types considered are those typically observed in earthquake events and include height-reduction, over-turn collapse, and inclination. Total collapse cases are not addressed as these are comparatively easy to be detected using simpler algorithms. Key issues are discussed including the attributes of essential information layers and sources of error influencing the accuracy of building damage detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
标致乐双发布了新的文献求助10
2秒前
Microbiota完成签到,获得积分10
2秒前
4秒前
板栗发布了新的文献求助10
5秒前
yy完成签到,获得积分10
6秒前
laoleigang完成签到,获得积分10
7秒前
顾矜应助kss采纳,获得10
8秒前
solkatt发布了新的文献求助10
10秒前
细心的以珊完成签到,获得积分10
11秒前
莫莫完成签到,获得积分10
12秒前
dongyi完成签到,获得积分10
13秒前
乐乐应助冷酷长颈鹿采纳,获得10
13秒前
水牛完成签到,获得积分10
14秒前
14秒前
斯文败类应助飞兰采纳,获得10
15秒前
科研通AI6应助1234567采纳,获得10
16秒前
16秒前
虚心迎曼完成签到,获得积分10
17秒前
Hey完成签到 ,获得积分10
17秒前
西西发布了新的文献求助10
18秒前
张千鸿发布了新的文献求助10
21秒前
hush发布了新的文献求助10
22秒前
22秒前
顾矜应助胡锦霞采纳,获得30
23秒前
23秒前
昏睡的飞雪完成签到,获得积分20
24秒前
胖墩墩发布了新的文献求助30
24秒前
25秒前
汉堡包应助七七采纳,获得10
26秒前
怕孤独的迎波完成签到 ,获得积分20
27秒前
ZJ发布了新的文献求助10
27秒前
飞兰发布了新的文献求助10
27秒前
Pan发布了新的文献求助10
29秒前
SHEYA应助hush采纳,获得10
29秒前
30秒前
想象中发布了新的文献求助10
30秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373655
求助须知:如何正确求助?哪些是违规求助? 4499675
关于积分的说明 14007024
捐赠科研通 4406529
什么是DOI,文献DOI怎么找? 2420537
邀请新用户注册赠送积分活动 1413340
关于科研通互助平台的介绍 1389891