已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Framework for Rapid Detection of Damaged Buildings Using Pre-Event LiDAR Data and Shadow Change Information

影子(心理学) 事件(粒子物理) 计算机科学 激光雷达 遥感 环境科学 地质学 心理学 量子力学 物理 心理治疗师
作者
Ying Zhang,Matthew Roffey,Sylvain G. Leblanc
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (16): 3297-3297 被引量:4
标识
DOI:10.3390/rs13163297
摘要

After a major earthquake in a dense urban area, the spatial distribution of heavily damaged buildings is indicative of the impact of the event on public safety. Timely assessment of the locations of severely damaged buildings and their damage morphologies using remote sensing approaches is critical for search and rescue actions. Detection of damaged buildings that did not suffer collapse can be highly challenging from aerial or satellite optical imagery, especially those structures with height-reduction or inclination damage and apparently intact roofs. A key information cue can be provided by a comparison of predicted building shadows based on pre-event building models with shadow estimates extracted from post-event imagery. This paper addresses the detection of damaged buildings in dense urban areas using the information of building shadow changes based on shadow simulation, analysis, and image processing in order to improve real-time damage detection and analysis. A novel processing framework for the rapid detection of damaged buildings without collapse is presented, which includes (a) generation of building digital surface models (DSMs) from pre-event LiDAR data, (b) building shadow detection and extraction from imagery, (c) simulation of predicted building shadows utilizing building DSMs, and (d) detection and identification of shadow areas exhibiting significant pre- and post-event differences that can be attributed to building damage. The framework is demonstrated through two simulated case studies. The building damage types considered are those typically observed in earthquake events and include height-reduction, over-turn collapse, and inclination. Total collapse cases are not addressed as these are comparatively easy to be detected using simpler algorithms. Key issues are discussed including the attributes of essential information layers and sources of error influencing the accuracy of building damage detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑马完成签到,获得积分10
刚刚
mo完成签到 ,获得积分10
1秒前
3秒前
寒冷听枫完成签到,获得积分20
4秒前
5秒前
skdfz168完成签到 ,获得积分10
5秒前
茴香豆完成签到 ,获得积分10
7秒前
7秒前
大棒槌发布了新的文献求助10
9秒前
郑州12138完成签到,获得积分10
10秒前
慕青应助yuanyuan采纳,获得10
12秒前
寒冷听枫发布了新的文献求助10
12秒前
13秒前
13秒前
orixero应助JimmyY采纳,获得10
14秒前
烟花应助肖浩翔采纳,获得10
14秒前
FashionBoy应助cc采纳,获得10
16秒前
科研小白狗完成签到 ,获得积分10
16秒前
18秒前
18秒前
zhang发布了新的文献求助10
18秒前
小酒迟疑发布了新的文献求助10
19秒前
满意妙梦发布了新的文献求助10
23秒前
小丁完成签到 ,获得积分10
24秒前
24秒前
25秒前
25秒前
25秒前
zhang完成签到,获得积分10
26秒前
洁净路灯发布了新的文献求助10
26秒前
111关注了科研通微信公众号
26秒前
刘雨森完成签到 ,获得积分10
26秒前
27秒前
28秒前
347u完成签到 ,获得积分10
28秒前
英俊的铭应助JimmyY采纳,获得10
30秒前
DRRIGHT发布了新的文献求助10
30秒前
大龙哥886应助科研通管家采纳,获得10
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
大龙哥886应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599588
求助须知:如何正确求助?哪些是违规求助? 4685339
关于积分的说明 14838367
捐赠科研通 4669426
什么是DOI,文献DOI怎么找? 2538128
邀请新用户注册赠送积分活动 1505495
关于科研通互助平台的介绍 1470868