A Novel Framework for Rapid Detection of Damaged Buildings Using Pre-Event LiDAR Data and Shadow Change Information

影子(心理学) 事件(粒子物理) 计算机科学 激光雷达 遥感 环境科学 地质学 心理学 量子力学 物理 心理治疗师
作者
Ying Zhang,Matthew Roffey,Sylvain G. Leblanc
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (16): 3297-3297 被引量:4
标识
DOI:10.3390/rs13163297
摘要

After a major earthquake in a dense urban area, the spatial distribution of heavily damaged buildings is indicative of the impact of the event on public safety. Timely assessment of the locations of severely damaged buildings and their damage morphologies using remote sensing approaches is critical for search and rescue actions. Detection of damaged buildings that did not suffer collapse can be highly challenging from aerial or satellite optical imagery, especially those structures with height-reduction or inclination damage and apparently intact roofs. A key information cue can be provided by a comparison of predicted building shadows based on pre-event building models with shadow estimates extracted from post-event imagery. This paper addresses the detection of damaged buildings in dense urban areas using the information of building shadow changes based on shadow simulation, analysis, and image processing in order to improve real-time damage detection and analysis. A novel processing framework for the rapid detection of damaged buildings without collapse is presented, which includes (a) generation of building digital surface models (DSMs) from pre-event LiDAR data, (b) building shadow detection and extraction from imagery, (c) simulation of predicted building shadows utilizing building DSMs, and (d) detection and identification of shadow areas exhibiting significant pre- and post-event differences that can be attributed to building damage. The framework is demonstrated through two simulated case studies. The building damage types considered are those typically observed in earthquake events and include height-reduction, over-turn collapse, and inclination. Total collapse cases are not addressed as these are comparatively easy to be detected using simpler algorithms. Key issues are discussed including the attributes of essential information layers and sources of error influencing the accuracy of building damage detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ZAxKMn发布了新的文献求助10
2秒前
2秒前
3秒前
DLQ完成签到,获得积分10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
ED应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
yznfly应助科研通管家采纳,获得30
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
yznfly应助科研通管家采纳,获得30
6秒前
djiwisksk66应助科研通管家采纳,获得10
6秒前
6秒前
核桃应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
djiwisksk66应助科研通管家采纳,获得10
6秒前
张凯茜发布了新的文献求助10
7秒前
SYLH应助动听凝安采纳,获得10
7秒前
Yeyuntian完成签到 ,获得积分10
7秒前
Yeyuntian完成签到 ,获得积分10
7秒前
函数完成签到 ,获得积分10
8秒前
wen发布了新的文献求助10
8秒前
共享精神应助洺全采纳,获得10
8秒前
Miuca发布了新的文献求助10
9秒前
上官若男应助GZ了呀采纳,获得10
11秒前
11秒前
领导范儿应助科研小白鼠采纳,获得30
13秒前
Singularity应助阿敬采纳,获得10
13秒前
混子发布了新的文献求助10
14秒前
000000完成签到,获得积分10
15秒前
15秒前
jj发布了新的文献求助10
19秒前
眼睛大雨筠应助YJL采纳,获得20
20秒前
20秒前
NexusExplorer应助冷酷的丁丁采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958212
求助须知:如何正确求助?哪些是违规求助? 3504372
关于积分的说明 11118239
捐赠科研通 3235651
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565