生物
酿酒酵母
DNA复制
基因组
基因组编辑
遗传学
DNA
基因组工程
计算生物学
基因
酵母
作者
Yingjia Pan,Siyang Xia,Chang Dong,Haojie Pan,Jin Cai,Lei Huang,Zhinan Xu,Jiazhang Lian
标识
DOI:10.1021/acssynbio.1c00217
摘要
Because of the limited understanding of cellular metabolism and regulatory networks, the rational engineering of complex industrial traits remains a grand challenge for the construction of microbial cell factories. Thus the development of simple, efficient, and programmable genome evolution techniques is still in high demanded for industrial biotechnology. In the present study, we established a random base editing (rBE) system for genome evolution in Saccharomyces cerevisiae. By fusing an unspecific single-stranded DNA (ssDNA)-binding protein to a cytidine deaminase, rBE introduced C to T mutations in a genome-wide manner. Specifically, we chose DNA-replication-related proteins, including replication factor A (RFA1, RFA2, and RFA3), DNA primase (PRI1), DNA helicase A (HCS1), and topoisomerase I (TOP1), to mediate the deamination of genomic ssDNA. As a proof of concept, we roughly estimated the rBE-mediated yeast genome mutation rate using the CAN1 mutation/canavanine resistance reporter system. We then evaluated the performance of these rBEs in improving the resistance against isobutanol and acetate and increasing the production of β-carotene. Finally, we employed the optimal rBE for the continuous genome evolution of a yeast cell factory resistant to 9% isobutanol. Owing to the conservation of DNA replication mechanisms, rBE is generally applicable and theoretically can be adopted for the continuous genome evolution of all organisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI