Flexoelectric-boosted piezoelectricity of BaTiO3@SrTiO3 core-shell nanostructure determined by multiscale simulations for flexible energy harvesters

材料科学 压电 挠曲电 纳米颗粒 纳米结构 纳米技术 纳米复合材料 机电耦合系数 压电系数 复合材料
作者
Yeon-gyu Kim,Hyunseung Kim,Gyoung-Ja Lee,Han-Uk Lee,Sang Gu Lee,Changyeon Baek,Min‐Ku Lee,Jin Ju Park,Qing Wang,Sung Beom Cho,Chang Kyu Jeong,Kwi‐Il Park
出处
期刊:Nano Energy [Elsevier]
卷期号:89: 106469-106469 被引量:32
标识
DOI:10.1016/j.nanoen.2021.106469
摘要

Achieving lead-free piezoelectric nanoparticles with excellent electromechanical responses is in great demand for fabricating nanoscale electronic devices. Recently, the coupling effect of combining flexoelectricity and piezoelectricity has attracted attention as a promising approach to control electromechanical properties. However, the implication of the coupling for the nanoparticles in this regard has been challenging due to its difficulty in controlling and observing the internal strain gradient. In this study, we demonstrate the flexoelectric-boosted electromechanical properties of piezoelectric nanoparticles using an induced built-in strain gradient in heterogeneous core-shell nanostructure. The composition-graded core-shell structure of BaTiO3@SrTiO3 nanoparticles enables a significant increment of the effective piezoelectric charge coefficient via the chemical heterogeneities-induced lattice strain gradient. Through the combinations of ab-initio calculation and multiphysics simulations, the origin of the strain distribution over nanoparticles is theoretically interpreted with accompanying phase balance and diffusion criteria. In addition, our designed core-shell nanoparticles-based energy harvesting devices generate highly efficient and flexoelectric-boosted piezoelectric output signals. Individual core-shell nanoparticles and related elastomeric nanocomposites reported in this work represent state-of-the-art electromechanical properties compared to previously reported piezoelectric nanoparticles and composites. This study provides a new source of inspiration for achieving high-performance lead-free piezoelectric nanostructures, paving the way for developing nano-electromechanical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zerro完成签到,获得积分20
刚刚
刚刚
刚刚
小青椒应助歪歪扣叉采纳,获得30
刚刚
传奇3应助菩提石头采纳,获得10
刚刚
跳跃的海雪完成签到,获得积分10
刚刚
浑复天完成签到,获得积分10
1秒前
求助人员发布了新的文献求助10
1秒前
LLL20240701完成签到,获得积分10
1秒前
Lu完成签到,获得积分20
1秒前
从容祥发布了新的文献求助10
2秒前
2秒前
我是老大应助桥桥采纳,获得10
2秒前
CodeCraft应助daggeraxe采纳,获得10
3秒前
宋垚发布了新的文献求助10
3秒前
niko发布了新的文献求助10
3秒前
柒八染发布了新的文献求助10
3秒前
3秒前
nicoco完成签到,获得积分10
3秒前
XZ发布了新的文献求助10
4秒前
慕青应助xsy采纳,获得10
4秒前
乐乐应助求助人员采纳,获得10
4秒前
852应助李胜采纳,获得10
4秒前
善良枫叶发布了新的文献求助10
4秒前
火星上的小笼包完成签到,获得积分10
4秒前
你你完成签到,获得积分10
5秒前
既然发布了新的文献求助10
5秒前
完美世界应助鲜艳的傲蕾采纳,获得10
5秒前
活力的依风完成签到,获得积分10
5秒前
champagnefeng完成签到,获得积分10
5秒前
5秒前
6秒前
Mine_cherry应助密斯刘采纳,获得10
6秒前
Lucas应助爱吃鱼的猫采纳,获得10
7秒前
英俊的铭应助戴冬梅采纳,获得10
7秒前
Disguise发布了新的文献求助10
7秒前
7秒前
Lucas应助某人采纳,获得10
8秒前
8秒前
禾沐发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512216
求助须知:如何正确求助?哪些是违规求助? 4606600
关于积分的说明 14500450
捐赠科研通 4542054
什么是DOI,文献DOI怎么找? 2488803
邀请新用户注册赠送积分活动 1470901
关于科研通互助平台的介绍 1443089