过电位
电催化剂
析氧
纳米晶材料
材料科学
化学工程
电解
法拉第效率
催化作用
电流密度
分解水
电解质
无机化学
纳米技术
电化学
化学
电极
物理化学
物理
工程类
光催化
量子力学
生物化学
作者
Jehad Abed,Samad Ahmadi,Laura Laverdure,Ahmed Abdellah,Colin P. O’Brien,Kevin M. Cole,Pedro H. Sobrinho,David Sinton,Drew Higgins,Nicholas J. Mosey,Steven J. Thorpe,Edward H. Sargent
标识
DOI:10.1002/adma.202103812
摘要
Abstract The oxygen evolution reaction (OER) limits the energy efficiency of electrocatalytic systems due to the high overpotential symptomatic of poor reaction kinetics; this problem worsens over time if the performance of the OER electrocatalyst diminishes during operation. Here, a novel synthesis of nanocrystalline Ni–Co–Se using ball milling at cryogenic temperature is reported. It is discovered that, by anodizing the Ni–Co–Se structure during OER, Se ions leach out of the original structure, allowing water molecules to hydrate Ni and Co defective sites, and the nanoparticles to evolve into an active Ni–Co oxyhydroxide. This transformation is observed using operando X‐ray absorption spectroscopy, with the findings confirmed using density functional theory calculations. The resulting electrocatalyst exhibits an overpotential of 279 mV at 0.5 A cm −2 and 329 mV at 1 A cm −2 and sustained performance for 500 h. This is achieved using low mass loadings (0.36 mg cm −2 ) of cobalt. Incorporating the electrocatalyst in an anion exchange membrane water electrolyzer yields a current density of 1 A cm −2 at 1.75 V for 95 h without decay in performance. When the electrocatalyst is integrated into a CO 2 ‐to‐ethylene electrolyzer, a record‐setting full cell voltage of 3 V at current density 1 A cm −2 is achieved.
科研通智能强力驱动
Strongly Powered by AbleSci AI