Machine Learning for Predicting the 3-Year Risk of Incident Diabetes in Chinese Adults

列线图 接收机工作特性 医学 逐步回归 糖尿病 体质指数 队列 预测建模 统计 机器学习 人工智能 内科学 计算机科学 数学 内分泌学
作者
Yang Wu,Haofei Hu,Jinlin Cai,Runtian Chen,Xin Zuo,Heng Cheng,Dewen Yan
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:9 被引量:19
标识
DOI:10.3389/fpubh.2021.626331
摘要

Purpose: We aimed to establish and validate a risk assessment system that combines demographic and clinical variables to predict the 3-year risk of incident diabetes in Chinese adults. Methods: A 3-year cohort study was performed on 15,928 Chinese adults without diabetes at baseline. All participants were randomly divided into a training set (n = 7,940) and a validation set (n = 7,988). XGBoost method is an effective machine learning technique used to select the most important variables from candidate variables. And we further established a stepwise model based on the predictors chosen by the XGBoost model. The area under the receiver operating characteristic curve (AUC), decision curve and calibration analysis were used to assess discrimination, clinical use and calibration of the model, respectively. The external validation was performed on a cohort of 11,113 Japanese participants. Result: In the training and validation sets, 148 and 145 incident diabetes cases occurred. XGBoost methods selected the 10 most important variables from 15 candidate variables. Fasting plasma glucose (FPG), body mass index (BMI) and age were the top 3 important variables. And we further established a stepwise model and a prediction nomogram. The AUCs of the stepwise model were 0.933 and 0.910 in the training and validation sets, respectively. The Hosmer-Lemeshow test showed a perfect fit between the predicted diabetes risk and the observed diabetes risk (p = 0.068 for the training set, p = 0.165 for the validation set). Decision curve analysis presented the clinical use of the stepwise model and there was a wide range of alternative threshold probability spectrum. And there were almost no the interactions between these predictors (most P-values for interaction >0.05). Furthermore, the AUC for the external validation set was 0.830, and the Hosmer-Lemeshow test for the external validation set showed no statistically significant difference between the predicted diabetes risk and observed diabetes risk (P = 0.824). Conclusion: We established and validated a risk assessment system for characterizing the 3-year risk of incident diabetes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7xq发布了新的文献求助30
刚刚
个性的紫菜应助北彧采纳,获得20
刚刚
柚子茶茶茶完成签到,获得积分20
刚刚
河马完成签到,获得积分10
刚刚
花花发布了新的文献求助10
1秒前
魏1122发布了新的文献求助30
2秒前
2秒前
2秒前
糊涂神完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助昵称采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
Cloud应助briliian采纳,获得10
5秒前
ssnha完成签到 ,获得积分10
5秒前
liuxl完成签到,获得积分10
6秒前
nn发布了新的文献求助10
6秒前
小星星发布了新的文献求助10
6秒前
打打应助热木采纳,获得10
6秒前
huy发布了新的文献求助10
8秒前
向日葵完成签到,获得积分10
8秒前
xwl发布了新的文献求助10
8秒前
随便发布了新的文献求助10
8秒前
9秒前
爆米花应助灵活性采纳,获得10
10秒前
10秒前
ccc完成签到 ,获得积分10
10秒前
vlots应助11采纳,获得30
10秒前
11秒前
MJ完成签到,获得积分10
12秒前
12秒前
huy完成签到,获得积分10
12秒前
唐文硕完成签到,获得积分10
12秒前
13秒前
Kis Sealed发布了新的文献求助10
13秒前
痴情的雨真关注了科研通微信公众号
13秒前
Chem完成签到,获得积分10
13秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143314
求助须知:如何正确求助?哪些是违规求助? 2794476
关于积分的说明 7811257
捐赠科研通 2450676
什么是DOI,文献DOI怎么找? 1303944
科研通“疑难数据库(出版商)”最低求助积分说明 627160
版权声明 601386