亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Predicting the 3-Year Risk of Incident Diabetes in Chinese Adults

列线图 接收机工作特性 医学 逐步回归 糖尿病 体质指数 队列 预测建模 统计 机器学习 人工智能 内科学 计算机科学 数学 内分泌学
作者
Yang Wu,Haofei Hu,Jinlin Cai,Runtian Chen,Xin Zuo,Heng Cheng,Dewen Yan
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:9 被引量:19
标识
DOI:10.3389/fpubh.2021.626331
摘要

Purpose: We aimed to establish and validate a risk assessment system that combines demographic and clinical variables to predict the 3-year risk of incident diabetes in Chinese adults. Methods: A 3-year cohort study was performed on 15,928 Chinese adults without diabetes at baseline. All participants were randomly divided into a training set (n = 7,940) and a validation set (n = 7,988). XGBoost method is an effective machine learning technique used to select the most important variables from candidate variables. And we further established a stepwise model based on the predictors chosen by the XGBoost model. The area under the receiver operating characteristic curve (AUC), decision curve and calibration analysis were used to assess discrimination, clinical use and calibration of the model, respectively. The external validation was performed on a cohort of 11,113 Japanese participants. Result: In the training and validation sets, 148 and 145 incident diabetes cases occurred. XGBoost methods selected the 10 most important variables from 15 candidate variables. Fasting plasma glucose (FPG), body mass index (BMI) and age were the top 3 important variables. And we further established a stepwise model and a prediction nomogram. The AUCs of the stepwise model were 0.933 and 0.910 in the training and validation sets, respectively. The Hosmer-Lemeshow test showed a perfect fit between the predicted diabetes risk and the observed diabetes risk (p = 0.068 for the training set, p = 0.165 for the validation set). Decision curve analysis presented the clinical use of the stepwise model and there was a wide range of alternative threshold probability spectrum. And there were almost no the interactions between these predictors (most P-values for interaction >0.05). Furthermore, the AUC for the external validation set was 0.830, and the Hosmer-Lemeshow test for the external validation set showed no statistically significant difference between the predicted diabetes risk and observed diabetes risk (P = 0.824). Conclusion: We established and validated a risk assessment system for characterizing the 3-year risk of incident diabetes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美紫槐发布了新的文献求助10
刚刚
Criminology34举报高兴电脑求助涉嫌违规
4秒前
dida完成签到,获得积分10
12秒前
CipherSage应助lemon采纳,获得10
12秒前
陶醉的烤鸡完成签到 ,获得积分10
12秒前
12秒前
张子捷应助精明葶采纳,获得10
13秒前
16秒前
菲1208完成签到,获得积分10
19秒前
三三完成签到 ,获得积分0
21秒前
rwq完成签到 ,获得积分10
22秒前
慕青应助优美紫槐采纳,获得10
22秒前
英姑应助11111采纳,获得10
25秒前
刘瑞吉完成签到,获得积分10
27秒前
666完成签到,获得积分20
30秒前
34秒前
向北游完成签到 ,获得积分10
35秒前
35秒前
大模型应助段dwh采纳,获得10
38秒前
41秒前
11111发布了新的文献求助10
42秒前
45秒前
归去来兮发布了新的文献求助10
46秒前
47秒前
英姑应助旺拽硫乃采纳,获得10
48秒前
Cumin完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
52秒前
段dwh发布了新的文献求助10
52秒前
58秒前
1分钟前
1分钟前
大刘完成签到,获得积分10
1分钟前
1分钟前
lemon完成签到,获得积分10
1分钟前
无限火龙果完成签到,获得积分10
1分钟前
lemon发布了新的文献求助10
1分钟前
归去来兮发布了新的文献求助10
1分钟前
1分钟前
清脆天蓉完成签到,获得积分10
1分钟前
666发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595661
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14818037
捐赠科研通 4651473
什么是DOI,文献DOI怎么找? 2535551
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469754