Machine Learning for Predicting the 3-Year Risk of Incident Diabetes in Chinese Adults

列线图 接收机工作特性 医学 逐步回归 糖尿病 体质指数 队列 预测建模 统计 机器学习 人工智能 内科学 计算机科学 数学 内分泌学
作者
Yang Wu,Haofei Hu,Jinlin Cai,Runtian Chen,Xin Zuo,Heng Cheng,Dewen Yan
出处
期刊:Frontiers in Public Health [Frontiers Media SA]
卷期号:9 被引量:19
标识
DOI:10.3389/fpubh.2021.626331
摘要

Purpose: We aimed to establish and validate a risk assessment system that combines demographic and clinical variables to predict the 3-year risk of incident diabetes in Chinese adults. Methods: A 3-year cohort study was performed on 15,928 Chinese adults without diabetes at baseline. All participants were randomly divided into a training set (n = 7,940) and a validation set (n = 7,988). XGBoost method is an effective machine learning technique used to select the most important variables from candidate variables. And we further established a stepwise model based on the predictors chosen by the XGBoost model. The area under the receiver operating characteristic curve (AUC), decision curve and calibration analysis were used to assess discrimination, clinical use and calibration of the model, respectively. The external validation was performed on a cohort of 11,113 Japanese participants. Result: In the training and validation sets, 148 and 145 incident diabetes cases occurred. XGBoost methods selected the 10 most important variables from 15 candidate variables. Fasting plasma glucose (FPG), body mass index (BMI) and age were the top 3 important variables. And we further established a stepwise model and a prediction nomogram. The AUCs of the stepwise model were 0.933 and 0.910 in the training and validation sets, respectively. The Hosmer-Lemeshow test showed a perfect fit between the predicted diabetes risk and the observed diabetes risk (p = 0.068 for the training set, p = 0.165 for the validation set). Decision curve analysis presented the clinical use of the stepwise model and there was a wide range of alternative threshold probability spectrum. And there were almost no the interactions between these predictors (most P-values for interaction >0.05). Furthermore, the AUC for the external validation set was 0.830, and the Hosmer-Lemeshow test for the external validation set showed no statistically significant difference between the predicted diabetes risk and observed diabetes risk (P = 0.824). Conclusion: We established and validated a risk assessment system for characterizing the 3-year risk of incident diabetes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NAA完成签到,获得积分10
1秒前
1秒前
tao_blue完成签到,获得积分10
1秒前
荔枝完成签到,获得积分20
1秒前
1秒前
2秒前
许多知识完成签到,获得积分10
2秒前
缓慢的战斗机完成签到,获得积分20
3秒前
圣晟胜发布了新的文献求助10
3秒前
科研通AI5应助nextconnie采纳,获得10
4秒前
陈朝旧迹完成签到,获得积分10
4秒前
无花果应助虚心海燕采纳,获得10
5秒前
sun发布了新的文献求助30
6秒前
6秒前
KBYer完成签到,获得积分10
6秒前
FashionBoy应助阳阳采纳,获得10
6秒前
许多知识发布了新的文献求助10
7秒前
苏源智完成签到,获得积分10
7秒前
Andy完成签到 ,获得积分10
9秒前
明理晓霜发布了新的文献求助10
11秒前
ZHANGMANLI0422关注了科研通微信公众号
11秒前
M先生发布了新的文献求助30
12秒前
FashionBoy应助许多知识采纳,获得10
13秒前
Poyd完成签到,获得积分10
16秒前
16秒前
故意的傲玉应助tao_blue采纳,获得10
17秒前
17秒前
kid1912完成签到,获得积分0
17秒前
小马甲应助一网小海蜇采纳,获得10
20秒前
专一的笑阳完成签到 ,获得积分10
20秒前
xuesensu完成签到 ,获得积分10
24秒前
豌豆完成签到,获得积分10
25秒前
M先生完成签到,获得积分10
25秒前
26秒前
28秒前
科研通AI5应助sun采纳,获得10
28秒前
shitzu完成签到 ,获得积分10
29秒前
choco发布了新的文献求助10
31秒前
32秒前
李健的小迷弟应助sun采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849