Effects of module stiffness and initial compression on lithium-ion cell aging

压缩(物理) 离子 材料科学 刚度 锂离子电池 锂(药物) 化学 电池(电) 复合材料 热力学 物理 心理学 功率(物理) 有机化学 精神科
作者
Tobias Deich,Mathias Storch,Kai Steiner,Andreas Bund
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:506: 230163-230163 被引量:70
标识
DOI:10.1016/j.jpowsour.2021.230163
摘要

The effects of automotive-related lithium-ion module design, i.e. module stiffness and initial compression during module assembly on cell aging, swelling and pressure evolution are still largely unknown. This paper presents the results of a long-term aging study of 12 large-format automotive graphite/NMC 622 pouch cells, cycled for different module stiffnesses and initial compressions using design of experiments. Statistical analysis of mechanical and aging data revealed significant nonlinear (interaction) effects of both factors on pressure evolution, capacity loss and increase in internal resistance of the cells. Pressure dependent cell aging is observed over 1000 cycles, which was related to loss of active material at the cathode from differential voltage analysis. Post-mortem analysis confirmed a cathode active material loss via half- and full-cell measurements of harvested electrodes. Cross-section SEM micrographs revealed increasing NMC-particle cracking with higher pressure. Based on this, a fatigue-based aging model was developed to describe the capacity loss due to pressure dependent particle cracking. The presented approach enables both improved modeling of pressure dependent aging and lifetime optimized module design • Cell swelling and aging under module stiffnesses and initial compressions •Significant effects of both factors on cell aging and pressure evolution •Pressure correlates with capacity fade due to loss of cathode active material •Active material loss confirmed by half-cell measurements and SEM cross-sections •Fatigue-based aging model of cathode particle cracking
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vvA11完成签到,获得积分10
刚刚
刚刚
刚刚
浅风完成签到,获得积分10
1秒前
TANG发布了新的文献求助20
1秒前
呆一起发布了新的文献求助10
2秒前
vvA11发布了新的文献求助10
2秒前
桔梗发布了新的文献求助10
2秒前
李健应助hubery采纳,获得10
4秒前
handsome发布了新的文献求助10
4秒前
爱意发布了新的文献求助10
5秒前
5秒前
威武白桃完成签到,获得积分10
6秒前
充电宝应助超超采纳,获得10
6秒前
7秒前
小明应助彩色的若南采纳,获得10
8秒前
李健的小迷弟应助岳元满采纳,获得10
9秒前
9秒前
lifang发布了新的文献求助10
10秒前
10秒前
浮游应助xhz采纳,获得10
10秒前
111发布了新的文献求助10
11秒前
xc完成签到,获得积分20
11秒前
12秒前
cheng完成签到,获得积分10
13秒前
13秒前
14秒前
一投就中发布了新的文献求助10
15秒前
刘柳发布了新的文献求助10
15秒前
顺利的蛋挞关注了科研通微信公众号
16秒前
Juvianne发布了新的文献求助10
17秒前
17秒前
17秒前
无辜的丹雪应助惠1采纳,获得30
18秒前
18秒前
CipherSage应助111采纳,获得10
19秒前
Owen应助111采纳,获得10
19秒前
甜蜜寄文发布了新的文献求助10
19秒前
19秒前
guangshuang发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901