Effects of module stiffness and initial compression on lithium-ion cell aging

压缩(物理) 离子 材料科学 刚度 锂离子电池 锂(药物) 化学 电池(电) 复合材料 热力学 物理 心理学 功率(物理) 有机化学 精神科
作者
Tobias Deich,Mathias Storch,Kai Steiner,Andreas Bund
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:506: 230163-230163 被引量:70
标识
DOI:10.1016/j.jpowsour.2021.230163
摘要

The effects of automotive-related lithium-ion module design, i.e. module stiffness and initial compression during module assembly on cell aging, swelling and pressure evolution are still largely unknown. This paper presents the results of a long-term aging study of 12 large-format automotive graphite/NMC 622 pouch cells, cycled for different module stiffnesses and initial compressions using design of experiments. Statistical analysis of mechanical and aging data revealed significant nonlinear (interaction) effects of both factors on pressure evolution, capacity loss and increase in internal resistance of the cells. Pressure dependent cell aging is observed over 1000 cycles, which was related to loss of active material at the cathode from differential voltage analysis. Post-mortem analysis confirmed a cathode active material loss via half- and full-cell measurements of harvested electrodes. Cross-section SEM micrographs revealed increasing NMC-particle cracking with higher pressure. Based on this, a fatigue-based aging model was developed to describe the capacity loss due to pressure dependent particle cracking. The presented approach enables both improved modeling of pressure dependent aging and lifetime optimized module design • Cell swelling and aging under module stiffnesses and initial compressions •Significant effects of both factors on cell aging and pressure evolution •Pressure correlates with capacity fade due to loss of cathode active material •Active material loss confirmed by half-cell measurements and SEM cross-sections •Fatigue-based aging model of cathode particle cracking
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cds发布了新的文献求助10
2秒前
abc发布了新的文献求助10
3秒前
Jasper应助山茶采纳,获得10
3秒前
隐形曼青应助刘丰铭采纳,获得10
3秒前
orixero应助韩霖采纳,获得10
3秒前
聪慧的土豆关注了科研通微信公众号
3秒前
5秒前
5秒前
解语花发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
Stella应助甜的瓜采纳,获得10
7秒前
9秒前
FashionBoy应助蔚蓝的天空采纳,获得10
9秒前
kk发布了新的文献求助10
9秒前
LFC发布了新的文献求助10
9秒前
10秒前
CodeCraft应助周苗采纳,获得10
10秒前
FashionBoy应助优秀的凡蕾采纳,获得10
11秒前
11秒前
JamesPei应助zpw123123采纳,获得10
12秒前
12秒前
12秒前
爱笑以松完成签到,获得积分10
12秒前
13秒前
mh发布了新的文献求助50
13秒前
科研通AI6应助正直的班采纳,获得10
14秒前
14秒前
vertl发布了新的文献求助10
15秒前
15秒前
16秒前
Seathern发布了新的文献求助10
16秒前
韩霖发布了新的文献求助10
17秒前
刘丰铭发布了新的文献求助10
17秒前
17秒前
gao杲gao完成签到,获得积分10
17秒前
17秒前
斯文败类应助happiness采纳,获得10
18秒前
zx完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013