Control of Nanoscale In Situ Protein Unfolding Defines Network Architecture and Mechanics of Protein Hydrogels

纳米技术 圆二色性 牛血清白蛋白 化学物理 纳米尺度 力谱学 生物物理学 蛋白质折叠 化学 原位 材料科学 共价键 结晶学 原子力显微镜 生物化学 有机化学 生物
作者
Matt D. G. Hughes,Benjamin S. Hanson,Sophie Cussons,Najet Mahmoudi,David J. Brockwell,Lorna Dougan
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (7): 11296-11308 被引量:31
标识
DOI:10.1021/acsnano.1c00353
摘要

Hierarchical assemblies of proteins exhibit a wide-range of material properties that are exploited both in nature and by artificially by humankind. However, little is understood about the importance of protein unfolding on the network assembly, severely limiting opportunities to utilize this nanoscale transition in the development of biomimetic and bioinspired materials. Here we control the force lability of a single protein building block, bovine serum albumin (BSA), and demonstrate that protein unfolding plays a critical role in defining the architecture and mechanics of a photochemically cross-linked native protein network. The internal nanoscale structure of BSA contains "molecular reinforcement" in the form of 17 covalent disulphide "nanostaples", preventing force-induced unfolding. Upon addition of reducing agents, these nanostaples are broken rendering the protein force labile. Employing a combination of circular dichroism (CD) spectroscopy, small-angle scattering (SAS), rheology, and modeling, we show that stapled protein forms reasonably homogeneous networks of cross-linked fractal-like clusters connected by an intercluster region of folded protein. Conversely, in situ protein unfolding results in more heterogeneous networks of denser fractal-like clusters connected by an intercluster region populated by unfolded protein. In addition, gelation-induced protein unfolding and cross-linking in the intercluster region changes the hydrogel mechanics, as measured by a 3-fold enhancement of the storage modulus, an increase in both the loss ratio and energy dissipation, and markedly different relaxation behavior. By controlling the protein's ability to unfold through nanoscale (un)stapling, we demonstrate the importance of in situ unfolding in defining both network architecture and mechanics, providing insight into fundamental hierarchical mechanics and a route to tune biomaterials for future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala应助鹿阿布采纳,获得10
刚刚
CipherSage应助Nnn采纳,获得10
1秒前
Jasper应助遇见如风似浪采纳,获得10
1秒前
nn发布了新的文献求助30
1秒前
顾矜应助穆头呼橹橹采纳,获得10
2秒前
一壶古酒应助苦艾酒采纳,获得100
2秒前
Zoey发布了新的文献求助100
2秒前
lyb发布了新的文献求助10
3秒前
ta完成签到,获得积分10
3秒前
眼睛大代萱完成签到,获得积分10
4秒前
天天快乐应助nana采纳,获得10
4秒前
娇1994完成签到,获得积分10
6秒前
6秒前
月河完成签到,获得积分10
6秒前
7秒前
fangfang666完成签到,获得积分10
8秒前
9秒前
9秒前
月河发布了新的文献求助10
9秒前
10秒前
学习要认真喽完成签到 ,获得积分10
11秒前
11秒前
压力是多的完成签到,获得积分10
13秒前
形容发布了新的文献求助10
13秒前
传奇3应助lyb采纳,获得10
13秒前
小迷糊发布了新的文献求助10
14秒前
爆米花应助小茗采纳,获得10
14秒前
Criminology34应助泽锦臻采纳,获得10
15秒前
可爱的函函应助阳光怀亦采纳,获得30
15秒前
16秒前
沫晨发布了新的文献求助10
16秒前
Vans完成签到,获得积分10
18秒前
深情安青应助形容采纳,获得10
19秒前
mayumei完成签到,获得积分10
19秒前
轩1发布了新的文献求助10
20秒前
21秒前
喜欢看神仙打架完成签到,获得积分10
21秒前
Peng发布了新的文献求助10
21秒前
22秒前
iaminter完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297798
求助须知:如何正确求助?哪些是违规求助? 4446568
关于积分的说明 13839917
捐赠科研通 4331721
什么是DOI,文献DOI怎么找? 2377860
邀请新用户注册赠送积分活动 1373172
关于科研通互助平台的介绍 1338697