Deep learning-based identification of acute ischemic core and deficit from non-contrast CT and CTA

医学 血管造影 计算机断层血管造影 计算机断层血管造影 冲程(发动机) 急诊科 放射科 急性中风 核医学 机械工程 精神科 工程类
作者
Chengyan Wang,Zhang Shi,Ming Yang,Lixiang Huang,Wenxing Fang,Li Jiang,Jing Ding,He Wang
出处
期刊:Journal of Cerebral Blood Flow and Metabolism [SAGE]
卷期号:41 (11): 3028-3038 被引量:18
标识
DOI:10.1177/0271678x211023660
摘要

The accurate identification of irreversible infarction and salvageable tissue is important in planning the treatments for acute ischemic stroke (AIS) patients. Computed tomographic perfusion (CTP) can be used to evaluate the ischemic core and deficit, covering most of the territories of anterior circulation, but many community hospitals and primary stroke centers do not have the capability to perform CTP scan in emergency situation. This study aimed to identify AIS lesions from widely available non-contrast computed tomography (NCCT) and CT angiography (CTA) using deep learning. A total of 345AIS patients from our emergency department were included. A multi-scale 3D convolutional neural network (CNN) was used as the predictive model with inputs of NCCT, CTA, and CTA+ (8 s delay after CTA) images. An external cohort with 108 patients was included to further validate the generalization performance of the proposed model. Strong correlations with CTP-RAPID segmentations (r = 0.84 for core, r = 0.83 for deficit) were observed when NCCT, CTA, and CTA+ images were all used in the model. The diagnostic decisions according to DEFUSE3 showed high accuracy when using NCCT, CTA, and CTA+ (0.90±0.04), followed by the combination of NCCT and CTA (0.87±0.04), CTA-alone (0.76±0.06), and NCCT-alone (0.53±0.09).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助吱哦周采纳,获得10
刚刚
星辰大海应助一方通行采纳,获得10
刚刚
WLGH7完成签到,获得积分10
1秒前
1秒前
2秒前
小宇OvO完成签到,获得积分10
3秒前
SciGPT应助自由的枕头采纳,获得10
3秒前
hihi发布了新的文献求助10
3秒前
wanci应助科研通管家采纳,获得30
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得30
4秒前
ding应助科研通管家采纳,获得10
4秒前
萧水白应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
yufanhui应助yusei采纳,获得10
4秒前
ding应助鲜艳的手链采纳,获得10
5秒前
高挑的幼翠完成签到 ,获得积分10
5秒前
WLGH7发布了新的文献求助10
5秒前
小宇OvO发布了新的文献求助10
6秒前
香蕉觅云应助暴躁的信封采纳,获得10
7秒前
Loooong应助FartKing采纳,获得10
7秒前
8秒前
11发布了新的文献求助10
8秒前
CipherSage应助馒头采纳,获得10
9秒前
glanceofwind完成签到 ,获得积分10
9秒前
hh完成签到,获得积分10
9秒前
12秒前
13秒前
一方通行发布了新的文献求助10
13秒前
小二郎应助克林沙星采纳,获得10
13秒前
15秒前
15秒前
思源应助丁叮采纳,获得10
16秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905