亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CapsPhase: Capsule Neural Network for Seismic Phase Classification and Picking

算法 人工智能 卷积神经网络 符号 计算机科学 班级(哲学) 模式识别(心理学) 数学 算术
作者
Omar M. Saad,Yangkang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:37
标识
DOI:10.1109/tgrs.2021.3089929
摘要

We develop a capsule neural network (CapsPhase) for seismic data classification and picking. CapsPhase consists of several layers, e.g., convolutional, primary capsule, and digit capsule layer. The convolutional layer extracts the significant features from the seismic data, while the primary capsule combines the extracted features into several vector representations named capsules. Afterward, the primary capsule is connected to the digit capsule layer using a dynamic routing strategy to obtain the vector representation of each output class, i.e., $P$ -wave, $S$ -wave, and noise class. CapsPhase is trained using 90% of the Southern California seismic dataset, which contains 4.5 million 4 s-three-component seismograms, and is validated and tested using the remaining 10%. Accordingly, the training accuracy reaches 98.70%, while the validation accuracy is 98.67% and the testing accuracy is 98.66%. Furthermore, the CapsPhase is tested using 300 000 earthquake waveforms recorded worldwide from the STanford EArthquake Dataset (STEAD). Accordingly, the precision, recall, and F1-score of the $P$ -picks corresponding to the CapsPhase reach 94.50%, 99.86%, and 97.10%, respectively, whereas the precision, recall, and F1-score of the $S$ -picks corresponding to the CapsPhase are 88.05%, 99.87%, and 93.60%, respectively. In addition, CapsPhase is evaluated using the Japanese seismic data and is compared to benchmark methods, e.g., short-time average/long-time average (STA/LTA), generalized phase detection (GPD), and CapsNet methods. As a result, CapsPhase reaches F1-scores of 99.10% and 98.64% for $P$ -wave and $S$ -wave arrival times, respectively, and outperforms the benchmark methods. The results show that the CapsPhase has the ability to pick the arrival times accurately despite the existence of strong background noise, e.g., the signal-to-noise-ratio (SNR) can be as low as −4.97 dB. Besides, the CapsPhase detects the arrival time when the earthquake has a small local magnitude, e.g., as low as $0.1~M_{L}$ . In addition, we find that the proposed algorithm has the ability to train using a small dataset, which is valuable for regions that have limited training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千里草完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
28秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
2分钟前
李健的粉丝团团长应助lan采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
lan完成签到,获得积分10
2分钟前
陈同学完成签到 ,获得积分10
2分钟前
lan发布了新的文献求助10
2分钟前
chen完成签到 ,获得积分10
2分钟前
sci2025opt完成签到 ,获得积分10
2分钟前
siv完成签到,获得积分10
3分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
3分钟前
科研兵发布了新的文献求助10
3分钟前
天天快乐应助shee采纳,获得10
3分钟前
搜集达人应助科研兵采纳,获得10
3分钟前
insomnia417完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
上官若男应助科研通管家采纳,获得10
5分钟前
朴素易梦发布了新的文献求助30
5分钟前
6分钟前
6分钟前
6分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
bkagyin应助科研通管家采纳,获得10
7分钟前
聪明的云完成签到 ,获得积分10
8分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
朴素易梦完成签到,获得积分10
9分钟前
小马甲应助John采纳,获得10
9分钟前
kuoping完成签到,获得积分0
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827