CapsPhase: Capsule Neural Network for Seismic Phase Classification and Picking

算法 人工智能 卷积神经网络 符号 计算机科学 班级(哲学) 模式识别(心理学) 数学 算术
作者
Omar M. Saad,Yangkang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:37
标识
DOI:10.1109/tgrs.2021.3089929
摘要

We develop a capsule neural network (CapsPhase) for seismic data classification and picking. CapsPhase consists of several layers, e.g., convolutional, primary capsule, and digit capsule layer. The convolutional layer extracts the significant features from the seismic data, while the primary capsule combines the extracted features into several vector representations named capsules. Afterward, the primary capsule is connected to the digit capsule layer using a dynamic routing strategy to obtain the vector representation of each output class, i.e., $P$ -wave, $S$ -wave, and noise class. CapsPhase is trained using 90% of the Southern California seismic dataset, which contains 4.5 million 4 s-three-component seismograms, and is validated and tested using the remaining 10%. Accordingly, the training accuracy reaches 98.70%, while the validation accuracy is 98.67% and the testing accuracy is 98.66%. Furthermore, the CapsPhase is tested using 300 000 earthquake waveforms recorded worldwide from the STanford EArthquake Dataset (STEAD). Accordingly, the precision, recall, and F1-score of the $P$ -picks corresponding to the CapsPhase reach 94.50%, 99.86%, and 97.10%, respectively, whereas the precision, recall, and F1-score of the $S$ -picks corresponding to the CapsPhase are 88.05%, 99.87%, and 93.60%, respectively. In addition, CapsPhase is evaluated using the Japanese seismic data and is compared to benchmark methods, e.g., short-time average/long-time average (STA/LTA), generalized phase detection (GPD), and CapsNet methods. As a result, CapsPhase reaches F1-scores of 99.10% and 98.64% for $P$ -wave and $S$ -wave arrival times, respectively, and outperforms the benchmark methods. The results show that the CapsPhase has the ability to pick the arrival times accurately despite the existence of strong background noise, e.g., the signal-to-noise-ratio (SNR) can be as low as −4.97 dB. Besides, the CapsPhase detects the arrival time when the earthquake has a small local magnitude, e.g., as low as $0.1~M_{L}$ . In addition, we find that the proposed algorithm has the ability to train using a small dataset, which is valuable for regions that have limited training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
aaa发布了新的文献求助10
刚刚
冬鹿发布了新的文献求助10
1秒前
ATTENTION完成签到,获得积分10
3秒前
4秒前
在水一方应助成长的点滴采纳,获得10
4秒前
浮游应助莫西莫西采纳,获得10
5秒前
w1111完成签到,获得积分20
5秒前
852应助格格巫采纳,获得10
5秒前
昱昱完成签到 ,获得积分10
6秒前
小彻完成签到,获得积分10
8秒前
Sli完成签到,获得积分10
9秒前
LAN完成签到,获得积分10
9秒前
swqswq发布了新的文献求助10
10秒前
早日发paper完成签到,获得积分10
10秒前
暴躁的念之完成签到 ,获得积分10
11秒前
13秒前
冬鹿完成签到,获得积分10
14秒前
阅读完成签到,获得积分10
15秒前
16秒前
Menkaz完成签到,获得积分10
17秒前
科目三应助LAN采纳,获得30
17秒前
LLLKJ完成签到,获得积分10
18秒前
xuhang完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
22秒前
开放涔雨发布了新的文献求助10
25秒前
Ted完成签到,获得积分10
26秒前
wang完成签到 ,获得积分10
27秒前
NIUBEN发布了新的文献求助10
28秒前
OSASACB完成签到 ,获得积分10
28秒前
帅男完成签到,获得积分10
29秒前
Werner完成签到 ,获得积分10
31秒前
大模型应助水苏采纳,获得10
31秒前
35秒前
酷炫的幻丝完成签到 ,获得积分10
35秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225537
求助须知:如何正确求助?哪些是违规求助? 4397211
关于积分的说明 13686001
捐赠科研通 4261743
什么是DOI,文献DOI怎么找? 2338660
邀请新用户注册赠送积分活动 1336070
关于科研通互助平台的介绍 1291974