CapsPhase: Capsule Neural Network for Seismic Phase Classification and Picking

算法 人工智能 卷积神经网络 符号 计算机科学 班级(哲学) 模式识别(心理学) 数学 算术
作者
Omar M. Saad,Yangkang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:37
标识
DOI:10.1109/tgrs.2021.3089929
摘要

We develop a capsule neural network (CapsPhase) for seismic data classification and picking. CapsPhase consists of several layers, e.g., convolutional, primary capsule, and digit capsule layer. The convolutional layer extracts the significant features from the seismic data, while the primary capsule combines the extracted features into several vector representations named capsules. Afterward, the primary capsule is connected to the digit capsule layer using a dynamic routing strategy to obtain the vector representation of each output class, i.e., $P$ -wave, $S$ -wave, and noise class. CapsPhase is trained using 90% of the Southern California seismic dataset, which contains 4.5 million 4 s-three-component seismograms, and is validated and tested using the remaining 10%. Accordingly, the training accuracy reaches 98.70%, while the validation accuracy is 98.67% and the testing accuracy is 98.66%. Furthermore, the CapsPhase is tested using 300 000 earthquake waveforms recorded worldwide from the STanford EArthquake Dataset (STEAD). Accordingly, the precision, recall, and F1-score of the $P$ -picks corresponding to the CapsPhase reach 94.50%, 99.86%, and 97.10%, respectively, whereas the precision, recall, and F1-score of the $S$ -picks corresponding to the CapsPhase are 88.05%, 99.87%, and 93.60%, respectively. In addition, CapsPhase is evaluated using the Japanese seismic data and is compared to benchmark methods, e.g., short-time average/long-time average (STA/LTA), generalized phase detection (GPD), and CapsNet methods. As a result, CapsPhase reaches F1-scores of 99.10% and 98.64% for $P$ -wave and $S$ -wave arrival times, respectively, and outperforms the benchmark methods. The results show that the CapsPhase has the ability to pick the arrival times accurately despite the existence of strong background noise, e.g., the signal-to-noise-ratio (SNR) can be as low as −4.97 dB. Besides, the CapsPhase detects the arrival time when the earthquake has a small local magnitude, e.g., as low as $0.1~M_{L}$ . In addition, we find that the proposed algorithm has the ability to train using a small dataset, which is valuable for regions that have limited training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助chimchim采纳,获得10
刚刚
哦o完成签到,获得积分10
1秒前
自然的听南完成签到 ,获得积分10
1秒前
坦呐完成签到,获得积分10
2秒前
开心幻巧完成签到,获得积分10
2秒前
ww完成签到 ,获得积分10
3秒前
3秒前
JHL发布了新的文献求助10
3秒前
xr完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
7秒前
orixero应助jaderuan采纳,获得10
7秒前
bkagyin应助学学学采纳,获得10
7秒前
cC应助童童采纳,获得10
7秒前
核桃发布了新的文献求助50
8秒前
9秒前
9秒前
科研通AI6应助靓丽的寒蕾采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
啦啦啦完成签到,获得积分10
12秒前
真真完成签到,获得积分20
12秒前
12秒前
张志超发布了新的文献求助10
13秒前
嘿嘿发布了新的文献求助10
13秒前
超帅悟空发布了新的文献求助10
13秒前
大机灵发布了新的文献求助10
13秒前
QI完成签到 ,获得积分10
14秒前
hao发布了新的文献求助10
14秒前
YuChen169完成签到 ,获得积分10
15秒前
真真发布了新的文献求助30
15秒前
15秒前
ghhu完成签到,获得积分10
16秒前
笨笨山芙完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618419
求助须知:如何正确求助?哪些是违规求助? 4703323
关于积分的说明 14922057
捐赠科研通 4757439
什么是DOI,文献DOI怎么找? 2550076
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299