CapsPhase: Capsule Neural Network for Seismic Phase Classification and Picking

算法 人工智能 卷积神经网络 符号 计算机科学 班级(哲学) 模式识别(心理学) 数学 算术
作者
Omar M. Saad,Yangkang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:37
标识
DOI:10.1109/tgrs.2021.3089929
摘要

We develop a capsule neural network (CapsPhase) for seismic data classification and picking. CapsPhase consists of several layers, e.g., convolutional, primary capsule, and digit capsule layer. The convolutional layer extracts the significant features from the seismic data, while the primary capsule combines the extracted features into several vector representations named capsules. Afterward, the primary capsule is connected to the digit capsule layer using a dynamic routing strategy to obtain the vector representation of each output class, i.e., $P$ -wave, $S$ -wave, and noise class. CapsPhase is trained using 90% of the Southern California seismic dataset, which contains 4.5 million 4 s-three-component seismograms, and is validated and tested using the remaining 10%. Accordingly, the training accuracy reaches 98.70%, while the validation accuracy is 98.67% and the testing accuracy is 98.66%. Furthermore, the CapsPhase is tested using 300 000 earthquake waveforms recorded worldwide from the STanford EArthquake Dataset (STEAD). Accordingly, the precision, recall, and F1-score of the $P$ -picks corresponding to the CapsPhase reach 94.50%, 99.86%, and 97.10%, respectively, whereas the precision, recall, and F1-score of the $S$ -picks corresponding to the CapsPhase are 88.05%, 99.87%, and 93.60%, respectively. In addition, CapsPhase is evaluated using the Japanese seismic data and is compared to benchmark methods, e.g., short-time average/long-time average (STA/LTA), generalized phase detection (GPD), and CapsNet methods. As a result, CapsPhase reaches F1-scores of 99.10% and 98.64% for $P$ -wave and $S$ -wave arrival times, respectively, and outperforms the benchmark methods. The results show that the CapsPhase has the ability to pick the arrival times accurately despite the existence of strong background noise, e.g., the signal-to-noise-ratio (SNR) can be as low as −4.97 dB. Besides, the CapsPhase detects the arrival time when the earthquake has a small local magnitude, e.g., as low as $0.1~M_{L}$ . In addition, we find that the proposed algorithm has the ability to train using a small dataset, which is valuable for regions that have limited training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤的薯片完成签到 ,获得积分10
刚刚
nanda完成签到,获得积分10
刚刚
怕孤单的耳机完成签到,获得积分10
1秒前
1秒前
哈哈哈哈呵应助你终硕采纳,获得20
1秒前
自然毛巾完成签到,获得积分10
1秒前
2秒前
迷路羽毛完成签到,获得积分10
4秒前
4秒前
4秒前
toto完成签到 ,获得积分10
4秒前
共享精神应助肥喵采纳,获得10
5秒前
5秒前
吗喽小祁完成签到,获得积分10
5秒前
xuxuxuxu发布了新的文献求助10
5秒前
陶醉水云完成签到,获得积分10
6秒前
SciGPT应助诚心的水杯采纳,获得10
6秒前
6秒前
6秒前
彭于晏应助dzj采纳,获得10
6秒前
humorr完成签到,获得积分10
7秒前
7秒前
大鱼完成签到,获得积分10
9秒前
瑾玉完成签到,获得积分10
9秒前
uniquedl完成签到 ,获得积分10
9秒前
GGS发布了新的文献求助10
9秒前
Emma完成签到 ,获得积分10
9秒前
提莫silence完成签到 ,获得积分10
11秒前
大鱼发布了新的文献求助10
11秒前
BIT完成签到,获得积分20
11秒前
11秒前
12秒前
12秒前
威威完成签到,获得积分10
12秒前
小兰花完成签到,获得积分10
12秒前
小二郎应助明亮小天鹅采纳,获得10
13秒前
CatherineRR完成签到,获得积分10
13秒前
hhh123完成签到,获得积分10
13秒前
liangs完成签到,获得积分10
14秒前
windyhill完成签到,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311581
求助须知:如何正确求助?哪些是违规求助? 2944368
关于积分的说明 8518562
捐赠科研通 2619731
什么是DOI,文献DOI怎么找? 1432529
科研通“疑难数据库(出版商)”最低求助积分说明 664684
邀请新用户注册赠送积分活动 649949