CapsPhase: Capsule Neural Network for Seismic Phase Classification and Picking

算法 人工智能 卷积神经网络 符号 计算机科学 班级(哲学) 模式识别(心理学) 数学 算术
作者
Omar M. Saad,Yangkang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:37
标识
DOI:10.1109/tgrs.2021.3089929
摘要

We develop a capsule neural network (CapsPhase) for seismic data classification and picking. CapsPhase consists of several layers, e.g., convolutional, primary capsule, and digit capsule layer. The convolutional layer extracts the significant features from the seismic data, while the primary capsule combines the extracted features into several vector representations named capsules. Afterward, the primary capsule is connected to the digit capsule layer using a dynamic routing strategy to obtain the vector representation of each output class, i.e., $P$ -wave, $S$ -wave, and noise class. CapsPhase is trained using 90% of the Southern California seismic dataset, which contains 4.5 million 4 s-three-component seismograms, and is validated and tested using the remaining 10%. Accordingly, the training accuracy reaches 98.70%, while the validation accuracy is 98.67% and the testing accuracy is 98.66%. Furthermore, the CapsPhase is tested using 300 000 earthquake waveforms recorded worldwide from the STanford EArthquake Dataset (STEAD). Accordingly, the precision, recall, and F1-score of the $P$ -picks corresponding to the CapsPhase reach 94.50%, 99.86%, and 97.10%, respectively, whereas the precision, recall, and F1-score of the $S$ -picks corresponding to the CapsPhase are 88.05%, 99.87%, and 93.60%, respectively. In addition, CapsPhase is evaluated using the Japanese seismic data and is compared to benchmark methods, e.g., short-time average/long-time average (STA/LTA), generalized phase detection (GPD), and CapsNet methods. As a result, CapsPhase reaches F1-scores of 99.10% and 98.64% for $P$ -wave and $S$ -wave arrival times, respectively, and outperforms the benchmark methods. The results show that the CapsPhase has the ability to pick the arrival times accurately despite the existence of strong background noise, e.g., the signal-to-noise-ratio (SNR) can be as low as −4.97 dB. Besides, the CapsPhase detects the arrival time when the earthquake has a small local magnitude, e.g., as low as $0.1~M_{L}$ . In addition, we find that the proposed algorithm has the ability to train using a small dataset, which is valuable for regions that have limited training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
农夫三拳完成签到,获得积分10
刚刚
CodeCraft应助水门采纳,获得10
刚刚
科研通AI6应助叉烧饭采纳,获得10
刚刚
科研通AI6应助antarctica采纳,获得10
1秒前
1秒前
淀粉发布了新的文献求助10
1秒前
JuPP完成签到,获得积分10
2秒前
科目三应助脱壳金蝉采纳,获得10
2秒前
不止完成签到,获得积分10
2秒前
完美世界应助朴素的项链采纳,获得10
2秒前
2秒前
天天快乐应助xxxxxxx采纳,获得10
3秒前
华仔应助七田皿采纳,获得10
3秒前
大个应助帅哥采纳,获得10
3秒前
领导范儿应助可靠板栗采纳,获得10
3秒前
4秒前
4秒前
xw完成签到,获得积分10
4秒前
碑海北发布了新的文献求助10
4秒前
5秒前
5秒前
stellachen完成签到,获得积分10
5秒前
樱sky完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
酷酷纸飞机完成签到,获得积分10
6秒前
6秒前
baiyuecheng完成签到,获得积分10
7秒前
许源智啊完成签到,获得积分10
7秒前
7秒前
一次性过完成签到,获得积分10
8秒前
wanci应助细腻的书雁采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
李文俊是我太孙完成签到,获得积分10
9秒前
baiyuecheng发布了新的文献求助10
9秒前
9秒前
阿喔发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594