亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CapsPhase: Capsule Neural Network for Seismic Phase Classification and Picking

算法 人工智能 卷积神经网络 符号 计算机科学 班级(哲学) 模式识别(心理学) 数学 算术
作者
Omar M. Saad,Yangkang Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:37
标识
DOI:10.1109/tgrs.2021.3089929
摘要

We develop a capsule neural network (CapsPhase) for seismic data classification and picking. CapsPhase consists of several layers, e.g., convolutional, primary capsule, and digit capsule layer. The convolutional layer extracts the significant features from the seismic data, while the primary capsule combines the extracted features into several vector representations named capsules. Afterward, the primary capsule is connected to the digit capsule layer using a dynamic routing strategy to obtain the vector representation of each output class, i.e., $P$ -wave, $S$ -wave, and noise class. CapsPhase is trained using 90% of the Southern California seismic dataset, which contains 4.5 million 4 s-three-component seismograms, and is validated and tested using the remaining 10%. Accordingly, the training accuracy reaches 98.70%, while the validation accuracy is 98.67% and the testing accuracy is 98.66%. Furthermore, the CapsPhase is tested using 300 000 earthquake waveforms recorded worldwide from the STanford EArthquake Dataset (STEAD). Accordingly, the precision, recall, and F1-score of the $P$ -picks corresponding to the CapsPhase reach 94.50%, 99.86%, and 97.10%, respectively, whereas the precision, recall, and F1-score of the $S$ -picks corresponding to the CapsPhase are 88.05%, 99.87%, and 93.60%, respectively. In addition, CapsPhase is evaluated using the Japanese seismic data and is compared to benchmark methods, e.g., short-time average/long-time average (STA/LTA), generalized phase detection (GPD), and CapsNet methods. As a result, CapsPhase reaches F1-scores of 99.10% and 98.64% for $P$ -wave and $S$ -wave arrival times, respectively, and outperforms the benchmark methods. The results show that the CapsPhase has the ability to pick the arrival times accurately despite the existence of strong background noise, e.g., the signal-to-noise-ratio (SNR) can be as low as −4.97 dB. Besides, the CapsPhase detects the arrival time when the earthquake has a small local magnitude, e.g., as low as $0.1~M_{L}$ . In addition, we find that the proposed algorithm has the ability to train using a small dataset, which is valuable for regions that have limited training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Forizix采纳,获得10
42秒前
Forizix完成签到,获得积分10
47秒前
48秒前
57秒前
Forizix发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
江经纬发布了新的文献求助20
1分钟前
1分钟前
李健的小迷弟应助George采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
四季刻歌发布了新的文献求助10
2分钟前
2分钟前
2分钟前
George发布了新的文献求助10
2分钟前
JamesPei应助郭楠楠采纳,获得10
2分钟前
艾路完成签到,获得积分10
2分钟前
研友_ngqgY8完成签到,获得积分10
2分钟前
JamesPei应助温暖的乐蓉采纳,获得10
2分钟前
2分钟前
郭楠楠发布了新的文献求助10
2分钟前
2分钟前
比格大王应助badyoungboy采纳,获得10
2分钟前
江经纬完成签到,获得积分20
2分钟前
顾矜应助郭楠楠采纳,获得10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
隐形不凡完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664330
求助须知:如何正确求助?哪些是违规求助? 4860894
关于积分的说明 15107549
捐赠科研通 4822849
什么是DOI,文献DOI怎么找? 2581773
邀请新用户注册赠送积分活动 1535993
关于科研通互助平台的介绍 1494287