清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Probability mapping based artifact detection and removal from single-channel EEG signals for brain–computer interface applications

脑电图 计算机科学 脑-机接口 峰度 工件(错误) 人工智能 模式识别(心理学) 偏斜 小波 统计 数学 心理学 精神科
作者
Md. Kafiul Islam,Parviz Ghorbanzadeh,Amir Rastegarnia
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:360: 109249-109249 被引量:16
标识
DOI:10.1016/j.jneumeth.2021.109249
摘要

Different types of artifacts in the electroencephalogram (EEG) signals can considerably reduce the performance of the later-stage EEG analysis algorithms for making decisions, such as those for brain–computer interfacing (BCI) classification. In this paper, we address the problem of artifact detection and removal from single-channel EEG signals. We propose a novel approach that maps the probability of an EEG epoch to be artifactual based on four different statistical measures: entropy (a measure of uncertainty), kurtosis (a measure of peakedness), skewness (a measure of asymmetry), and periodic waveform index (a measure of periodicity). Then, a stationary wavelet transform based artifact removal is proposed that employs a particular probability threshold provided by the user. We have executed our experiments with both synthetic and real EEG data. It is observed that the proposed method exhibits a superior performance for suppressing the artifact contaminated from EEG with minimum distortion. Moreover, evaluation of the algorithm using EEG dataset for BCI experiments reveals that artifact removal can considerably improve the BCI output in both event-related potential and motor-imagery based BCI applications. The proposed algorithm has been applied to both real and synthesized data testing and compared with other state-of-the-art automated artifact removal methods. Its superior performance is verified in terms of various performance metrics including computational complexity for justifying its use in BCI-like real-time applications. Our work is expected to be useful for future research EEG signal processing and eventually to develop more accurate real-time EEG-based BCI applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神秘猎牛人应助乐观之瑶采纳,获得10
2秒前
冉亦完成签到,获得积分10
9秒前
星际舟完成签到,获得积分10
25秒前
33秒前
shhoing应助科研通管家采纳,获得10
46秒前
46秒前
Akim应助科研通管家采纳,获得10
46秒前
十七岁男高中生完成签到 ,获得积分10
58秒前
Hazel完成签到,获得积分20
1分钟前
1分钟前
Hazel发布了新的文献求助10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zly完成签到 ,获得积分10
2分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
神秘猎牛人应助daizao采纳,获得10
3分钟前
鲑鱼完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
外星人发布了新的文献求助10
4分钟前
4分钟前
SciGPT应助Kashing采纳,获得10
4分钟前
5分钟前
xwy完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
Kashing发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
Mine完成签到,获得积分10
6分钟前
香蕉觅云应助乐观之瑶采纳,获得10
6分钟前
爆米花应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538845
求助须知:如何正确求助?哪些是违规求助? 4625835
关于积分的说明 14596950
捐赠科研通 4566541
什么是DOI,文献DOI怎么找? 2503357
邀请新用户注册赠送积分活动 1481421
关于科研通互助平台的介绍 1452856