亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Probability mapping based artifact detection and removal from single-channel EEG signals for brain–computer interface applications

脑电图 计算机科学 脑-机接口 峰度 工件(错误) 人工智能 模式识别(心理学) 偏斜 小波 统计 数学 心理学 精神科
作者
Md. Kafiul Islam,Parviz Ghorbanzadeh,Amir Rastegarnia
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:360: 109249-109249 被引量:16
标识
DOI:10.1016/j.jneumeth.2021.109249
摘要

Different types of artifacts in the electroencephalogram (EEG) signals can considerably reduce the performance of the later-stage EEG analysis algorithms for making decisions, such as those for brain–computer interfacing (BCI) classification. In this paper, we address the problem of artifact detection and removal from single-channel EEG signals. We propose a novel approach that maps the probability of an EEG epoch to be artifactual based on four different statistical measures: entropy (a measure of uncertainty), kurtosis (a measure of peakedness), skewness (a measure of asymmetry), and periodic waveform index (a measure of periodicity). Then, a stationary wavelet transform based artifact removal is proposed that employs a particular probability threshold provided by the user. We have executed our experiments with both synthetic and real EEG data. It is observed that the proposed method exhibits a superior performance for suppressing the artifact contaminated from EEG with minimum distortion. Moreover, evaluation of the algorithm using EEG dataset for BCI experiments reveals that artifact removal can considerably improve the BCI output in both event-related potential and motor-imagery based BCI applications. The proposed algorithm has been applied to both real and synthesized data testing and compared with other state-of-the-art automated artifact removal methods. Its superior performance is verified in terms of various performance metrics including computational complexity for justifying its use in BCI-like real-time applications. Our work is expected to be useful for future research EEG signal processing and eventually to develop more accurate real-time EEG-based BCI applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhuajw完成签到,获得积分10
1秒前
难过忆山发布了新的文献求助10
21秒前
26秒前
sssss发布了新的文献求助40
30秒前
sssss完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
汉堡包应助桃子e采纳,获得10
2分钟前
2分钟前
桃子e发布了新的文献求助10
2分钟前
伊伊伊伊一一一完成签到,获得积分10
3分钟前
ding应助scn666采纳,获得10
3分钟前
思源应助桃子e采纳,获得10
3分钟前
欣喜的香菱完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
难过忆山发布了新的文献求助10
4分钟前
英姑应助Zz采纳,获得10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
hq完成签到 ,获得积分10
4分钟前
5分钟前
poki完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
6分钟前
天天快乐应助Fluoxtine采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788708
求助须知:如何正确求助?哪些是违规求助? 5710788
关于积分的说明 15473823
捐赠科研通 4916686
什么是DOI,文献DOI怎么找? 2646520
邀请新用户注册赠送积分活动 1594203
关于科研通互助平台的介绍 1548617