Probability mapping based artifact detection and removal from single-channel EEG signals for brain–computer interface applications

脑电图 计算机科学 脑-机接口 峰度 工件(错误) 人工智能 模式识别(心理学) 偏斜 小波 统计 数学 心理学 精神科
作者
Md. Kafiul Islam,Parviz Ghorbanzadeh,Amir Rastegarnia
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:360: 109249-109249 被引量:16
标识
DOI:10.1016/j.jneumeth.2021.109249
摘要

Different types of artifacts in the electroencephalogram (EEG) signals can considerably reduce the performance of the later-stage EEG analysis algorithms for making decisions, such as those for brain–computer interfacing (BCI) classification. In this paper, we address the problem of artifact detection and removal from single-channel EEG signals. We propose a novel approach that maps the probability of an EEG epoch to be artifactual based on four different statistical measures: entropy (a measure of uncertainty), kurtosis (a measure of peakedness), skewness (a measure of asymmetry), and periodic waveform index (a measure of periodicity). Then, a stationary wavelet transform based artifact removal is proposed that employs a particular probability threshold provided by the user. We have executed our experiments with both synthetic and real EEG data. It is observed that the proposed method exhibits a superior performance for suppressing the artifact contaminated from EEG with minimum distortion. Moreover, evaluation of the algorithm using EEG dataset for BCI experiments reveals that artifact removal can considerably improve the BCI output in both event-related potential and motor-imagery based BCI applications. The proposed algorithm has been applied to both real and synthesized data testing and compared with other state-of-the-art automated artifact removal methods. Its superior performance is verified in terms of various performance metrics including computational complexity for justifying its use in BCI-like real-time applications. Our work is expected to be useful for future research EEG signal processing and eventually to develop more accurate real-time EEG-based BCI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
独角兽完成签到,获得积分10
2秒前
5秒前
fuchao发布了新的文献求助10
5秒前
ddd杜发布了新的文献求助10
5秒前
务实的以松完成签到,获得积分10
8秒前
星辰大海应助zyq采纳,获得30
14秒前
默存完成签到,获得积分10
14秒前
在水一方应助敏er好学采纳,获得10
15秒前
Xuech发布了新的文献求助10
16秒前
16秒前
16秒前
不安青牛应助fuchao采纳,获得10
19秒前
不安青牛应助fuchao采纳,获得10
19秒前
21秒前
Revision发布了新的文献求助10
22秒前
文艺纲完成签到,获得积分20
23秒前
24秒前
钟可可完成签到,获得积分10
25秒前
充电宝应助BB采纳,获得10
25秒前
深情安青应助诉与山风听采纳,获得10
25秒前
喵喵666完成签到,获得积分10
28秒前
QI完成签到 ,获得积分10
28秒前
shun完成签到,获得积分10
29秒前
敏er好学发布了新的文献求助10
30秒前
C洛7完成签到,获得积分10
30秒前
31秒前
wanci应助Revision采纳,获得10
31秒前
31秒前
真的不会完成签到,获得积分10
34秒前
小蘑菇应助贺贺采纳,获得10
34秒前
白敬亭发布了新的文献求助10
35秒前
Zoe发布了新的文献求助10
36秒前
36秒前
37秒前
天天好心覃完成签到 ,获得积分10
39秒前
39秒前
Ruuo616完成签到 ,获得积分10
40秒前
ads发布了新的文献求助10
41秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342243
求助须知:如何正确求助?哪些是违规求助? 2969441
关于积分的说明 8639537
捐赠科研通 2649251
什么是DOI,文献DOI怎么找? 1450633
科研通“疑难数据库(出版商)”最低求助积分说明 671949
邀请新用户注册赠送积分活动 661138