Probability mapping based artifact detection and removal from single-channel EEG signals for brain–computer interface applications

脑电图 计算机科学 脑-机接口 峰度 工件(错误) 人工智能 模式识别(心理学) 偏斜 小波 统计 数学 心理学 精神科
作者
Md. Kafiul Islam,Parviz Ghorbanzadeh,Amir Rastegarnia
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:360: 109249-109249 被引量:16
标识
DOI:10.1016/j.jneumeth.2021.109249
摘要

Different types of artifacts in the electroencephalogram (EEG) signals can considerably reduce the performance of the later-stage EEG analysis algorithms for making decisions, such as those for brain–computer interfacing (BCI) classification. In this paper, we address the problem of artifact detection and removal from single-channel EEG signals. We propose a novel approach that maps the probability of an EEG epoch to be artifactual based on four different statistical measures: entropy (a measure of uncertainty), kurtosis (a measure of peakedness), skewness (a measure of asymmetry), and periodic waveform index (a measure of periodicity). Then, a stationary wavelet transform based artifact removal is proposed that employs a particular probability threshold provided by the user. We have executed our experiments with both synthetic and real EEG data. It is observed that the proposed method exhibits a superior performance for suppressing the artifact contaminated from EEG with minimum distortion. Moreover, evaluation of the algorithm using EEG dataset for BCI experiments reveals that artifact removal can considerably improve the BCI output in both event-related potential and motor-imagery based BCI applications. The proposed algorithm has been applied to both real and synthesized data testing and compared with other state-of-the-art automated artifact removal methods. Its superior performance is verified in terms of various performance metrics including computational complexity for justifying its use in BCI-like real-time applications. Our work is expected to be useful for future research EEG signal processing and eventually to develop more accurate real-time EEG-based BCI applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanyuan发布了新的文献求助10
1秒前
GGbond发布了新的文献求助10
1秒前
GGbond发布了新的文献求助10
1秒前
GGbond发布了新的文献求助10
1秒前
GGbond发布了新的文献求助10
1秒前
GGbond发布了新的文献求助10
1秒前
hyt发布了新的文献求助10
3秒前
玻丽露露完成签到,获得积分10
4秒前
杜青发布了新的文献求助10
4秒前
所所应助Denmark采纳,获得10
4秒前
自然冬卉发布了新的文献求助10
5秒前
5秒前
JamesPei应助楊子采纳,获得10
6秒前
dmxhh发布了新的文献求助10
6秒前
7秒前
阿修罗完成签到,获得积分10
8秒前
8秒前
干净寻冬应助廖喜林采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
orixero应助xiaoz采纳,获得10
10秒前
善学以致用应助勤恳寒安采纳,获得10
10秒前
tucohy完成签到 ,获得积分10
10秒前
renjian发布了新的文献求助10
11秒前
12秒前
黄家康发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
鱼叮叮完成签到,获得积分10
14秒前
14秒前
123完成签到 ,获得积分10
15秒前
111发布了新的文献求助30
15秒前
Time完成签到,获得积分10
16秒前
16秒前
xin完成签到,获得积分10
16秒前
17秒前
平常紫安完成签到 ,获得积分10
18秒前
18秒前
yuanyuan完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790